Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(33): e2300053, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093214

RESUMO

Bottom-up production of semiconductor nanomaterials is often accompanied by inhomogeneity resulting in a spread in electronic properties which may be influenced by the nanoparticle geometry, crystal quality, stoichiometry, or doping. Using photoluminescence spectroscopy of a population of more than 11 000 individual zinc-doped gallium arsenide nanowires, inhomogeneity is revealed in, and correlation between doping and nanowire diameter by use of a Bayesian statistical approach. Recombination of hot-carriers is shown to be responsible for the photoluminescence lineshape; by exploiting lifetime variation across the population, hot-carrier dynamics is revealed at the sub-picosecond timescale showing interband electronic dynamics. High-throughput spectroscopy together with a Bayesian approach are shown to provide unique insight in an inhomogeneous nanomaterial population, and can reveal electronic dynamics otherwise requiring complex pump-probe experiments in highly non-equilibrium conditions.

2.
Nanotechnology ; 32(2): 025605, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32987376

RESUMO

Cost- and resource-efficient growth is necessary for many applications of semiconductor nanowires. We here present the design, operational details and theory behind Aerotaxy, a scalable alternative technology for producing quality crystalline nanowires at a remarkably high growth rate and throughput. Using size-controlled Au seed particles and organometallic precursors, Aerotaxy can produce nanowires with perfect crystallinity and controllable dimensions, and the method is suitable to meet industrial production requirements. In this report, we explain why Aerotaxy is an efficient method for fabricating semiconductor nanowires and explain the technical aspects of our custom-built Aerotaxy system. Investigations using SEM (scanning electron microscope), TEM (transmission electron microscope) and other characterization methods are used to support the claim that Aerotaxy is indeed a scalable method capable of producing nanowires with reproducible properties. We have investigated both binary and ternary III-V semiconductor material systems like GaAs and GaAsP. In addition, common aspects of Aerotaxy nanowires deduced from experimental observations are used to validate the Aerotaxy growth model, based on a computational flow dynamics (CFD) approach. We compare the experimental results with the model behaviour to better understand Aerotaxy growth.

3.
Nanotechnology ; 31(13): 134001, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31917683

RESUMO

A substrate-free approach of semiconductor nanowire growth has been achieved by the aerotaxy technique previously. In this work, we propose an in situ method to monitor the size of nanowires through non-destructive optical-extinction measurements. Our work aims to build a theoretical look-up database of extinction spectra for a single nanowire of varying dimensions. We describe the origin of possible peaks in the spectra, for example due to nanowire-length dependent Fabry-Perot resonances and nanowire-diameter dependent TM and TE mode resonances. Furthermore, we show that the Au catalyst on top of the nanowire can be ignored in the simulations when the volume of the nanowire is an order of magnitude larger than that of the Au catalyst and the diameter is small compared to the incident wavelength. For the calculation of the extinction spectra, we use the finite element method, the discrete dipole approximation and the Mie theory. To compare with experimental measurements of randomly oriented nanowires, we perform an averaging over nanowire orientation for the modeled results. However, in the experiments, nanowires are accumulating on the quartz window of the measurement setup, which leads to increasing uncertainty in the comparison with the experimental extinction spectra. This uncertainty can be eliminated by considering both a sparse and a dense collection of nanowires on the quartz window in the optical simulations. Finally, we create a database of extinction spectra for a GaAs nanowire of varying diameters and lengths. This database can be used to estimate the diameter and the length of the nanowires by comparing the position of a peak and the peak-to-shoulder difference in the extinction spectrum. Possible tapering of nanowires can be monitored through the appearance of an additional peak at a wavelength of 700-800 nm.

4.
Small ; : e1801285, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30003665

RESUMO

For the purpose of functionalizing III-V semiconductor nanowires using n-doping, Sn-doped GaAs zincblende nanowires are produced, using the growth method of Aerotaxy. The growth conditions used are such that Ga droplets, formed on the nanowire surface, increase in number and concentrations when the Sn-precursor concentration is increased. Droplet-covered wires grown with varying Sn concentrations are analyzed by transmission electron microscopy and electron tomography, which together establish the positioning of the droplets to be preferentially on {-111}B facets. These facets have the same polarity as the main wire growth direction, [-1-1-1]B. This means that the generated Ga particles can form nucleation sites for possible nanowire branch growth. The concept of azimuthal mapping is introduced as a useful tool for nanowire surface visualization and evaluation. It is demonstrated here that electron tomography is useful in revealing both the surface and internal morphologies of the nanowires, opening up for applications in the analysis of more structurally complicated systems like radially asymmetrical nanowires. The analysis also gives a further understanding of the limits of the dopants which can be used for Aerotaxy nanowires.

5.
Nanotechnology ; 29(28): 285601, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29664421

RESUMO

Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 °C and 530 °C, respectively, resulted in good morphological quality nanowires for a flow ratio of TESn to TMGa up to 2.25 × 10-3. The wires are pure zinc-blende for all investigated growth conditions, whereas nanowires grown by metal-organic vapor phase epitaxy with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1-3) × 1019 cm-3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.

6.
Nature ; 492(7427): 90-4, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23201685

RESUMO

Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes, solar cells and batteries. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1 micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III-V materials. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape--and, thus, controlled optical and electronic properties--through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent〈111〉B crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III-V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.

7.
Nano Lett ; 16(9): 5701-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27564139

RESUMO

We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.

8.
Nanotechnology ; 27(45): 455704, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27713183

RESUMO

In this paper we have investigated the dynamics of photo-generated charge carriers in a series of aerotaxy-grown GaAs nanowires (NWs) with different levels of Zn doping. Time-resolved photo-induced luminescence and transient absorption have been employed to investigate radiative (band edge transition) and non-radiative charge recombination processes, respectively. We find that the photo-luminescence (PL) lifetime of intrinsic GaAs NWs is significantly increased after growing an AlGaAs shell over them, indicating that an AlGaAs shell can effectively passivate the surface of aerotaxy-grown GaAs NWs. We observe that PL decay time as well as PL intensity decrease with increasing Zn doping, which can be attributed to thermally activated electron trapping with the trap density increased due to the Zn doping level.

9.
Nano Lett ; 11(5): 2028-31, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21456545

RESUMO

Tandem InP nanowire pn-junctions have been grown on a Si substrate using metal-organic vapor phase epitaxy. In situ HCl etching allowed the different subcomponents to be stacked on top of each other in the axial extension of the nanowires without detrimental radial growth. Electro-optical measurements on a single nanowire tandem pn-junction device show an open-circuit voltage of 1.15 V under illumination close to 1 sun, which is an increase of 67% compared to a single pn-junction device.

10.
ACS Appl Nano Mater ; 5(7): 9063-9071, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35909504

RESUMO

Sensitive detection of low-abundance biomolecules is central for diagnostic applications. Semiconductor nanowires can be designed to enhance the fluorescence signal from surface-bound molecules, prospectively improving the limit of optical detection. However, to achieve the desired control of physical dimensions and material properties, one currently uses relatively expensive substrates and slow epitaxy techniques. An alternative approach is aerotaxy, a high-throughput and substrate-free production technique for high-quality semiconductor nanowires. Here, we compare the optical sensing performance of custom-grown aerotaxy-produced Ga(As)P nanowires vertically aligned on a polymer substrate to GaP nanowires batch-produced by epitaxy on GaP substrates. We find that signal enhancement by individual aerotaxy nanowires is comparable to that from epitaxy nanowires and present evidence of single-molecule detection. Platforms based on both types of nanowires show substantially higher normalized-to-blank signal intensity than planar glass surfaces, with the epitaxy platforms performing somewhat better, owing to a higher density of nanowires. With further optimization, aerotaxy nanowires thus offer a pathway to scalable, low-cost production of highly sensitive nanowire-based platforms for optical biosensing applications.

11.
Appl Spectrosc ; 75(11): 1402-1409, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34477464

RESUMO

We report the observation of photoluminescence emission from airborne gold, silver, and copper nanoparticles. A continuous wave 532 nm laser was employed for excitation. Photoluminescence from gold nanoparticles carried in a nitrogen gas flow was both spectrally resolved and directly imaged in situ using an intensified charge-coupled device camera. The simultaneously detected Raman signal from the nitrogen molecules enables quantitative estimation of the photoluminescence quantum yield of the gold nanoparticles. Photoluminescence from metal nanoparticles carried in a gas flow provides a potential tool for operando imaging of plasmonic metal nanoparticles in aerosol reactions.

12.
Sci Rep ; 11(1): 9276, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927216

RESUMO

The stability of nanoparticles and their supports are critical, but poorly understood, parameters for applications of such systems in liquid environments. Here we develop an approach to systematically investigate the stability of aerosol-generated nanoparticles after exposure to commonly used solvents using a combination of identical location-SEM and density/size analysis. We demonstrate that the choice of solvent needs to be carefully matched with both the particle and support materials. We show that thermal annealing significantly increases the adhesion of the particles and expands the scope of applications in aqueous media and for biological applications. The results clarify combinations of inorganic nanoparticles on oxide and semiconductor supports with solvents and environmental conditions that give sufficient stability. Combined, the presented methods should be of value in investigating the stability of nanoparticle systems after exposure to solvent and can be used for future developments of high-performing supported aerosol-generated nanoparticles for solvent-based applications.

13.
Sci Rep ; 10(1): 11041, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632137

RESUMO

The vapor-liquid-solid (VLS) mechanism is probably the most versatile method to fabricate semiconductor nanowires and several investigations assume a compositionally homogeneous catalyst particle. In this investigation we address the compositional homogeneity of the catalyst particle during growth of nanowires. Using diffusion calculations, we show that the particle is indeed homogeneous during VLS growth, but can have a strong concentration gradient during vapor-solid-solid growth, that is, growth with a solid particle. We also show that the response to a concentration change is extremely fast, meaning that if the concentration at the surface of the particle changes, the entire particle reaches this new concentration effectively instantaneously.

14.
Biointerphases ; 15(5): 051007, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33019796

RESUMO

Nanowires (NWs) are novel nanomaterials with applications in everything from medical implants to solar cells. With increasing number of applications, it is increasingly likely that organisms are exposed to these materials either intentionally or by accident. It is, therefore, important to study their interactions with biological systems and biomolecules. Upon exposure to biological fluids, nanostructure surfaces are quickly covered by a biomolecule corona. The composition of the corona determines the nanostructure's biological fate. Furthermore, upon adsorption, the protein structure can be affected. In order to study the corona morphology, we used two model proteins, laminin of the extracellular matrix and the immune system enzyme myeloperoxidase. We image the protein corona directly by cryo-TEM and enhance resolution by labeling the corona with activated gold nanoparticles. Three-dimensional imaging of the protein corona further increases the resolution and reveals irregularities in corona topography. By doing so, we identified bimodal distribution of spacing between gold nanoparticles and the NW surface for laminin corona at 58 and 85 nm distance from the NWs' surface. The dual topography of the corona is adding a new complexity of the protein corona surface and its interactions with the surrounding biology.


Assuntos
Arsenicais/química , Gálio/química , Laminina/química , Nanofios/química , Coroa de Proteína/química , Microscopia Crioeletrônica , Ouro/química , Humanos , Laminina/metabolismo , Nanopartículas Metálicas/química , Peroxidase/química , Peroxidase/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo
15.
Nanomaterials (Basel) ; 10(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339116

RESUMO

We have previously demonstrated that we can grow p-type GaAs nanowires using Zn doping during gold catalyzed growth with aerotaxy. In this investigation, we show how to calculate the hole concentrations in such nanowires. We base the calculations on the Zhang-Northrup defect formation energy. Using density functional theory, we calculate the energy of the defect, a Zn atom on a Ga site, using a supercell approach. The chemical potentials of Zn and Ga in the liquid catalyst particle are calculated from a thermodynamically assessed database including Au, Zn, Ga, and As. These quantities together with the chemical potential of the carriers enable us to calculate the hole concentration in the nanowires self-consistently. We validate our theoretical results against aerotaxy grown GaAs nanowires where we have varied the hole concentration by varying the Zn/Ga ratio in the aerotaxy growth.

16.
Science ; 339(6123): 1057-60, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23328392

RESUMO

Photovoltaics based on nanowire arrays could reduce cost and materials consumption compared with planar devices but have exhibited low efficiency of light absorption and carrier collection. We fabricated a variety of millimeter-sized arrays of p-type/intrinsic/n-type (p-i-n) doped InP nanowires and found that the nanowire diameter and the length of the top n-segment were critical for cell performance. Efficiencies up to 13.8% (comparable to the record planar InP cell) were achieved by using resonant light trapping in 180-nanometer-diameter nanowires that only covered 12% of the surface. The share of sunlight converted into photocurrent (71%) was six times the limit in a simple ray optics description. Furthermore, the highest open-circuit voltage of 0.906 volt exceeds that of its planar counterpart, despite about 30 times higher surface-to-volume ratio of the nanowire cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA