Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 15(7): e1007245, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356589

RESUMO

Aberrant DNA methylation disrupts normal gene expression in cancer and broadly contributes to oncogenesis. We previously developed MethylMix, a model-based algorithmic approach to identify epigenetically regulated driver genes. MethylMix identifies genes where methylation likely executes a functional role by using transcriptomic data to select only methylation events that can be linked to changes in gene expression. However, given that proteins more closely link genotype to phenotype recent high-throughput proteomic data provides an opportunity to more accurately identify functionally relevant abnormal methylation events. Here we present a MethylMix analysis that refines nominations for epigenetic driver genes by leveraging quantitative high-throughput proteomic data to select only genes where DNA methylation is predictive of protein abundance. Applying our algorithm across three cancer cohorts we find that using protein abundance data narrows candidate nominations, where the effect of DNA methylation is often buffered at the protein level. Next, we find that MethylMix genes predictive of protein abundance are enriched for biological processes involved in cancer including functions involved in epithelial and mesenchymal transition. Moreover, our results are also enriched for tumor markers which are predictive of clinical features like tumor stage and we find clustering using MethylMix genes predictive of protein abundance captures cancer subtypes.


Assuntos
Metilação de DNA , Neoplasias/genética , Neoplasias/metabolismo , Proteoma/genética , Algoritmos , Biomarcadores Tumorais/genética , Biologia Computacional , Progressão da Doença , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Genéticos , Família Multigênica , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA