Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38490247

RESUMO

OBJECTIVES: Reactive arthritis (ReA) provides a unique opportunity to comprehend how a mucosal infection leads to inflammatory arthritis at a distant site without the apparent invasion of the pathogen. Unfortunately, conventional stool cultures after ReA provide limited information, and there is a dearth of metagenomic studies in ReA. The objective of this study was to identify gut microbiota associated with the development of ReA. METHODS: Patients with ReA or undifferentiated peripheral spondyloarthritis (UpSpA) were included if they presented within 4 weeks of the onset of the current episode of arthritis. Metagenomic DNA was extracted from the stools of these patients and of 36 age- and sex-similar controls. Sequencing and analysis were done using a standard 16S ribosomal pipeline. RESULTS: Of 55 patients, there was no difference between the gut microbiota of postdiarrheal ReA(n = 20) and of upSpA (n = 35). Comparing the gut microbiota of patients vs healthy controls, the patients had significantly higher alpha and beta diversity measures. After stringency filters, Proteobacteria had high abundance while Firmicutes had lesser as compared with the controls. Six families were overexpressed in patients, while another five were overexpressed in controls. Sixteen genera and 18 species were significantly different between patients and controls. At the species level there was strong association of Staphylococcus aureus, Clostridium septicum Klebsiella pneumoniae, Escherichia coli, Empedobacter brevis, Roseburia hominis, Bacillus velezensis, and Crassaminicella with ReA. CONCLUSION: The microbiota of classical gut-associated ReA and upSpA is similar. Patients have higher diversities in their gut microbiota compared with healthy controls. Both known and previously unreported species associated with ReA/upSpA were identified.

2.
Rheumatol Int ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823896

RESUMO

MIS-C is a rare, highly inflammatory state resembling incomplete Kawasaki disease, temporarily associated with COVID-19. The pathogenesis is not completely known. RNAseq was carried out on whole blood of six treatment-naïve MIS-C patients. This was compared against RNAseq transcriptomics data of five healthy controls (HC), four Kawasaki Disease (KD) and seven systemic Juvenile Idiopathic Arthritis (sJIA). Using PCA, MIS-C clustered separately from HC, KD and sJIA. Amongst the top 50 significant genes in the three comparisons with HC, KD, and sJIA, common genes were: TMCC2, ITGA2B, DMTN, GFI1B, PF4, QSER1, GRAP2, TUBB1. DSEA revealed that maximum number of hits for overexpressed pathways was for NABA matrisome activation when MIS-C was compared against HC. Cytokine stimulated cellular activation pathways, specifically IL-10 were downregulated. MIS-C had more activated pathways of neutrophil degranulation and acquired immune activation but less of coagulation system or heat-shock system involvement as compared to KD. As compared to sJIA, humoral immune response and complements were activated. Matrisome activation was higher, with increased cell-cell interaction and ECM signalling. This analysis revealed novel insights into the pathogenesis of MIS-C, including the potential role of matrisomes, humoral immune system and down-regulated interleukin-10 pathways.

3.
World J Microbiol Biotechnol ; 39(7): 171, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37101059

RESUMO

Characterization of new potential probiotics is desirable in the field of research on probiotics for their extensive use in health and disease. Tribes could be an unusual source of probiotics due to their unique food habits and least dependence on medications and consumption of antibiotics. The aim of the present study is to isolate lactic acid bacteria from tribal fecal samples of Odisha, India, and characterize their genetic and probiotic attributes. In this context one of the catalase-negative and Gram-positive isolates, identified using 16S rRNA sequencing as Ligilactobacillus salivarius, was characterized in vitro for its acid and bile tolerance, cell adhesion and antimicrobial properties. The whole genome sequence was obtained and analyzed for strain level identification, presence of genomic determinants for probiotic-specific features, and safety. Genes responsible for its antimicrobial and immunomodulatory functions were detected. The secreted metabolites were analyzed using high resolution mass spectroscopy; the results indicated that the antimicrobial potential could be due to the presence of pyroglutamic acid, propionic acid, lactic acid, 2-hydroxyisocaproic acid, homoserine, and glutathione, and the immuno-modulating activity, contributed by the presence of short chain fatty acids such as acetate, propionate, and butyrate. So, to conclude we have successfully characterized a Ligilactobacillus salivarius species with potential antimicrobial and immunomodulatory ability. The health-promoting effects of this probiotic strain and/or its derivatives will be investigated in future.


Assuntos
Ligilactobacillus salivarius , Probióticos , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Genômica
4.
Front Cell Dev Biol ; 11: 1060537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819104

RESUMO

In vitro cell line model systems are essential in supporting the research community due to their low cost, uniform culturing conditions, homogeneous biological resources, and easy experimental design to study the cause and effect of a gene or a molecule. Human leukemia 60 (HL60) is an in-vitro hematopoietic model system that has been used for decades to study normal myeloid differentiation and leukemia biology. Here, we show that IMDM supplemented with 20% FBS is an optimal culturing condition and induces effective myeloid differentiation compared with RPMI supplemented with 10% FBS when HL60 is induced with 1α,25-dihydroxyvitamin D3 (Vit D3) and all-trans retinoic acid (ATRA). The chromatin organization is compacted, and the repressive epigenetic mark H3K27me3 is enhanced upon HL60-mediated terminal differentiation. Differential gene expression analysis obtained from RNA sequencing in HL60 cells during myeloid differentiation showed the induction of pathways involved in epigenetic regulation, myeloid differentiation, and immune regulation. Using high-throughput transcriptomic data (GSE74246), we show the similarities (genes that did not satisfy |log2FC|>1 and FDR<0.05) and differences (FDR <0.05 and |log2FC|>1) between granulocyte-monocyte progenitor vs HL60 cells, Vit D3 induced monocytes (vMono) in HL60 cells vs primary monocytes (pMono), and HL60 cells vs leukemic blasts at the transcriptomic level. We found striking similarities in biological pathways between these comparisons, suggesting that the HL60 model system can be effectively used for studying myeloid differentiation and leukemic aberrations. The differences obtained could be attributed to the fact that the cellular programs of the leukemic cell line and primary cells are different. We validated several gene expression patterns for different comparisons with CD34+ cells derived from cord blood for myeloid differentiation and AML patients. In addition to the current knowledge, our study further reveals the significance of using HL60 cells as in vitro model system under optimal conditions to understand its potential as normal myeloid differentiation model as well as leukemic model at the molecular level.

5.
Prog Mol Biol Transl Sci ; 191(1): 83-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36270683

RESUMO

Mutual beneficial associations with the microbial consortia are an essential requisite of human life. Microbial communities have both a symbiotic and a pathogenic standpoint, which portrays a context-dependent scenario of the human microbiome. The symbiotic assemblage works to develop indispensable functions of the human body such as immune system, digestive system, defense against colonization by pathobionts and their toxins, etc. Furthermore, any deviation in the resource utilization by the symbionts due to host factors comprising lifestyle changes, diet, drugs, immunocompromised states, and co-morbidities could perturb beneficial microbes communities and promote the invasion by opportunistic pathogens thus, disrupting the homeostatic state. Microbial infestations have proved to be carcinogenic but this does not spontaneously establish a cancer hallmark, rather they initiate a cascade of events that disturbs the normal cellular activities finally these defective machineries invade distant sites of the body, submitting to a devastative transformed internal milieu. Significant technological and system biology advances have been made in elucidating a lucid but complex basis of such microbe-associated malignancies. This chapter discusses the recent advances, without compromising the concepts of the inception studies, including a brief version of the microbial status in cancer generation, mechanistic approaches adapted, therapeutic interventions, system biology approaches with special mention on the study design gaps, challenges in addressing the drawbacks and finally with a perspective of the future targeted studies, has been a focus of this piece of work.


Assuntos
Microbiota , Neoplasias , Humanos , Simbiose
6.
Mol Omics ; 18(6): 490-505, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506682

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx, which may be involved in co-infection in COVID-19 patients. The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in the COVID-19 NP microbiome with an increase in the abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggests their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.


Assuntos
COVID-19 , Coinfecção , Mycobacterium , Mycoplasma , Coinfecção/epidemiologia , Disbiose , Humanos , Nasofaringe , RNA Ribossômico 16S/genética , RNA Viral , SARS-CoV-2
7.
Mediterr J Hematol Infect Dis ; 12(1): e2020015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180910

RESUMO

INTRODUCTION: The aim of the study was to enumerate the clinical, hematological, and molecular spectrum of G6PD deficiency in malaria endemic regions of south west Odisha. METHODS: Diagnosis of G6PD deficiency was made by using the Di-chloroindophenol Dye test in two south west districts (Kalahandi and Rayagada) of Odisha State. Demographic and clinical history was taken from each individual using a pre-structured questionnaire. Molecular characterization of G6PD deficiency was done using PCR-RFLP and Sanger sequencing. RESULTS: A total of 1981 individuals were screened; among them, 59 (2.97%) individuals were G6PD deficient. The analysis revealed that G6PD deficiency was more among males (4.0%) as compared to females (2.3%). Prevalence of G6PD deficiency was significantly higher among tribal populations (4.8%) as compared to non-tribal populations (2.4%) (p=0.012, OR=2.014, 95%CI=1.206-3.365). Twenty four individuals with G6PD deficiency had mild to moderate anemia, whereas 26 G6PD deficient individuals had a history of malaria infection. Among them, 3 (11.5%) required blood transfusion during treatment. Molecular analysis revealed G6PD Orissa as the most common (88%) mutation in the studied cohort. G6PD Kaiping (n=3), G6PD Coimbra (n=2) and G6PD Union (n=1) were also noted in this cohort. CONCLUSION: The cumulative prevalence of G6PD deficiency in the present study is below the estimated national prevalence. G6PD deficiency was higher among tribes as compared to non-tribes. Clinical significance for G6PD deficiency was noted only in malaria infected individuals. Rare G6PD Kaiping and G6PD Union variants were also present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA