Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 23(1): 443, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284273

RESUMO

BACKGROUND: Generating polygenic risk scores for diseases and complex traits requires high quality GWAS summary statistic files. Often, these files can be difficult to acquire either as a result of unshared or incomplete data. To date, bioinformatics tools which focus on restoring missing columns containing identification and association data are limited, which has the potential to increase the number of usable GWAS summary statistics files. RESULTS: SumStatsRehab was able to restore rsID, effect/other alleles, chromosome, base pair position, effect allele frequencies, beta, standard error, and p-values to a better extent than any other currently available tool, with minimal loss. CONCLUSIONS: SumStatsRehab offers a unique tool utilizing both functional programming and pipeline-like architecture, allowing users to generate accurate data restorations for incomplete summary statistics files. This in turn, increases the number of usable GWAS summary statistics files, which may be invaluable for less researched health traits.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Herança Multifatorial , Fenótipo , Algoritmos
2.
PLoS One ; 17(10): e0260177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260643

RESUMO

Whole-genome data has become significantly more accessible over the last two decades. This can largely be attributed to both reduced sequencing costs and imputation models which make it possible to obtain nearly whole-genome data from less expensive genotyping methods, such as microarray chips. Although there are many different approaches to imputation, the Hidden Markov Model (HMM) remains the most widely used. In this study, we compared the latest versions of the most popular HMM-based tools for phasing and imputation: Beagle5.4, Eagle2.4.1, Shapeit4, Impute5 and Minimac4. We benchmarked them on four input datasets with three levels of chip density. We assessed each imputation software on the basis of accuracy, speed and memory usage, and showed how the choice of imputation accuracy metric can result in different interpretations. The highest average concordance rate was achieved by Beagle5.4, followed by Impute5 and Minimac4, using a reference-based approach during phasing and the highest density chip. IQS and R2 metrics revealed that Impute5 and Minimac4 obtained better results for low frequency markers, while Beagle5.4 remained more accurate for common markers (MAF>5%). Computational load as measured by run time was lower for Beagle5.4 than Minimac4 and Impute5, while Minimac4 utilized the least memory of the imputation tools we compared. ShapeIT4, used the least memory of the phasing tools examined with genotype chip data, while Eagle2.4.1 used the least memory phasing WGS data. Finally, we determined the combination of phasing software, imputation software, and reference panel, best suited for different situations and analysis needs and created an automated pipeline that provides a way for users to create customized chips designed to optimize their imputation results.


Assuntos
Polimorfismo de Nucleotídeo Único , Software , Técnicas de Genotipagem/métodos , Genoma , Análise de Sequência com Séries de Oligonucleotídeos , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA