Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 28(1): 53-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36415926

RESUMO

Steroid hormones induce the transcription of target genes by activating nuclear receptors. Early transcriptional response to various stimuli, including hormones, involves the active catalysis of topoisomerase II (TOP2) at transcription regulatory sequences. TOP2 untangles DNAs by transiently generating double-strand breaks (DSBs), where TOP2 covalently binds to DSB ends. When TOP2 fails to rejoin, called "abortive" catalysis, the resulting DSBs are repaired by tyrosyl-DNA phosphodiesterase 2 (TDP2) and non-homologous end-joining (NHEJ). A steroid, cortisol, is the most important glucocorticoid, and dexamethasone (Dex), a synthetic glucocorticoid, is widely used for suppressing inflammation in clinics. We here revealed that clinically relevant concentrations of Dex and physiological concentrations of cortisol efficiently induce DSBs in G1 phase cells deficient in TDP2 and NHEJ. The DSB induction depends on glucocorticoid receptor (GR) and TOP2. Considering the specific role of TDP2 in removing TOP2 adducts from DSB ends, induced DSBs most likely represent stalled TOP2-DSB complexes. Inhibition of RNA polymerase II suppressed the DSBs formation only modestly in the G1 phase. We propose that cortisol and Dex frequently generate DSBs through the abortive catalysis of TOP2 at transcriptional regulatory sequences, including promoters or enhancers, where active TOP2 catalysis occurs during early transcriptional response.


Assuntos
Quebras de DNA de Cadeia Dupla , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucocorticoides/farmacologia , Reparo do DNA , Proteínas Nucleares/metabolismo , Hidrocortisona/farmacologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA/genética
2.
Commun Chem ; 7(1): 208, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284936

RESUMO

Developing effective inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) has been challenging because of the enzyme shallow catalytic pocket and non-specific substrate binding interactions. Recently, we discovered a quinolone-binding hot spot in TDP1's active site proximal to the evolutionary conserved Y204 and F259 residues that position DNA. Sulfur (VI) fluoride exchange (SuFEx) is a biocompatible click chemistry reaction that enables acylation of protein residues, including tyrosine. Selective protein modifications can provide insights into the biological roles of proteins and inform ligand design. As we report herein, we used SuFEx chemistries to prepare covalent TDP1-bound binders showing site-specific covalent bonds with Y204. Our work presents the first application of SuFEx chemistries to TDP1 ligands. It validates the ability to covalently modify specific TDP1 residues by designed targeting and adds to the chemical biology resource toolbox for studying TDP1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA