Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 133(7)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269092

RESUMO

Bacterial cell division is initiated by the midcell assembly of polymers of the tubulin-like GTPase FtsZ. The FtsZ ring (Z-ring) is a discontinuous structure made of dynamic patches of FtsZ that undergo treadmilling motion. Roughly a dozen additional essential proteins are recruited to the division site by the dynamic Z-ring scaffold and subsequently activate cell wall synthesis to drive cell envelope constriction during division. In this Cell Science at a Glance article and the accompanying poster, we summarize our understanding of the assembly and activation of the bacterial cell division machinery. We introduce polymerization properties of FtsZ and discuss our current knowledge of divisome assembly and activation. We further highlight the intimate relationship between the structure and dynamics of FtsZ and the movement and activity of cell wall synthases at the division site, before concluding with a perspective on the most important open questions on bacterial cell division.


Assuntos
Citocinese , Proteínas do Citoesqueleto , Proteínas de Bactérias/genética , Divisão Celular , Parede Celular , Proteínas do Citoesqueleto/genética
2.
Mol Microbiol ; 107(2): 180-197, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29119622

RESUMO

During bacterial division, polymers of the tubulin-like GTPase FtsZ assemble at midcell to form the cytokinetic Z-ring, which coordinates peptidoglycan (PG) remodeling and envelope constriction. Curvature of FtsZ filaments promotes membrane deformation in vitro, but its role in division in vivo remains undefined. Inside cells, FtsZ directs PG insertion at the division plane, though it is unclear how FtsZ structure and dynamics are mechanistically coupled to PG metabolism. Here we study FzlA, a division protein that stabilizes highly curved FtsZ filaments, as a tool for assessing the contribution of FtsZ filament curvature to constriction. We show that in Caulobacter crescentus, FzlA must bind to FtsZ for division to occur and that FzlA-mediated FtsZ curvature is correlated with efficient division. We observed that FzlA influences constriction rate, and that this activity is associated with its ability to bind and curve FtsZ polymers. Further, we found that a slowly constricting fzlA mutant strain develops 'pointy' poles, suggesting that FzlA influences the relative contributions of radial versus longitudinal PG insertion at the septum. These findings implicate FzlA as a critical coordinator of envelope constriction through its interaction with FtsZ and suggest a functional link between FtsZ curvature and efficient constriction in C. crescentus.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caulobacter crescentus/citologia , Caulobacter crescentus/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , GTP Fosfo-Hidrolases/metabolismo , Biblioteca Gênica , Peptidoglicano/metabolismo , Ligação Proteica/genética , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas/genética
3.
Clin Proteomics ; 16: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774579

RESUMO

BACKGROUND: In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host's immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. METHODS: Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC-MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. RESULTS: A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. CONCLUSIONS: These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections.

4.
Clin Proteomics ; 13(1): 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597813

RESUMO

BACKGROUND: Ebola virus like particles (EBOV VLPs, eVLPs), are produced by expressing the viral transmembrane glycoprotein (GP) and structural matrix protein VP40 in mammalian cells. When expressed, these proteins self-assemble and bud from 'host' cells displaying morphology similar to infectious virions. Several studies have shown that rodents and non-human primates vaccinated with eVLPs are protected from lethal EBOV challenge. The mucin-like domain of envelope glycoprotein GP1 serves as the major target for a productive humoral immune response. Therefore GP1 concentration is a critical quality attribute of EBOV vaccines and accurate measurement of the amount of GP1 present in eVLP lots is crucial to understanding variability in vaccine efficacy. METHODS: After production, eVLPs are characterized by determining total protein concentration and by western blotting, which only provides semi-quantitative information for GP1. Therefore, a liquid chromatography high resolution mass spectrometry (LC-HRMS) approach for accurately measuring GP1 concentration in eVLPs was developed. The method employs an isotope dilution strategy using four target peptides from two regions of the GP1 protein. Purified recombinant GP1 was generated to serve as an assay standard. GP1 quantitation in 5 eVLP lots was performed on an LTQ-Orbitrap Elite and the final quantitation was derived by comparing the relative response of 200 fmol AQUA peptide standards to the analyte response at 4 ppm. RESULTS: Conditions were optimized to ensure complete tryptic digestion of eVLP, however, persistent missed cleavages were observed in target peptides. Additionally, N-terminal truncated forms of the GP1 protein were observed in all eVLP lots, making peptide selection crucial. The LC-HRMS strategy resulted in quantitation of GP1 with a lower limit of quantitation of 1 fmol and an average percent coefficient of variation (CV) of 7.6 %. Unlike western blot values, the LC-HRMS quantitation of GP1 in 5 eVLP vaccine lots exhibited a strong linear relationship (positive correlation) with survival (after EBOV challenge) in mice. CONCLUSIONS: This method provides a means to rapidly determine eVLP batch quality based upon quantitation of antigenic GP1. By monitoring variability in GP1 content, the eVLP production process can be optimized, and the total amount of GP1 needed to confer protection accurately determined.

5.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015166

RESUMO

To divide, bacteria must synthesize their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins, including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place. However, their activation pathway remains unresolved. In Caulobacter crescentus, FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of Caulobacter FtsW and FzlA, we demonstrate that FzlA is a limiting constriction activation factor that signals to promote conversion of inactive FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.


Assuntos
Caulobacter , Divisão Celular , Parede Celular , Segregação de Cromossomos , Caulobacter/citologia , Morte Celular , Divisão Celular/genética , Proteínas de Bactérias/genética , Peptidoglicano
6.
Curr Biol ; 29(9): 1460-1470.e4, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31031115

RESUMO

Bacterial growth and division require insertion of new peptidoglycan (PG) into the existing cell wall by PG synthase enzymes. Emerging evidence suggests that many PG synthases require activation to function; however, it is unclear how activation of division-specific PG synthases occurs. The FtsZ cytoskeleton has been implicated as a regulator of PG synthesis during division, but the mechanisms through which it acts are unknown. Here, we show that FzlA, an FtsZ-binding protein and essential regulator of constriction in Caulobacter crescentus, helps link FtsZ to PG synthesis to promote division. We find that hyperactive mutants of the PG synthases FtsW and FtsI specifically render fzlA, but not other division genes, non-essential. However, FzlA is still required to maintain proper constriction rate and efficiency in a hyperactive PG synthase background. Intriguingly, loss of fzlA in the presence of hyperactivated FtsWI causes cells to rotate about the division plane during constriction and sensitizes cells to cell-wall-specific antibiotics. We demonstrate that FzlA-dependent signaling to division-specific PG synthesis is conserved in another α-proteobacterium, Agrobacterium tumefaciens. These data establish that FzlA helps link FtsZ to cell wall remodeling and is required for signaling to both activate and spatially orient PG synthesis during division. Overall, our findings support the paradigm that activation of SEDS-PBP PG synthases is a broadly conserved requirement for bacterial morphogenesis.


Assuntos
Proteínas de Bactérias/genética , Caulobacter crescentus/fisiologia , Divisão Celular/fisiologia , Proteínas do Citoesqueleto/genética , Ligases/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Divisão Celular/genética , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA