Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Graph Model ; 129: 108726, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377794

RESUMO

The stress-inducible mammalian heat shock protein Hsp70 and its bacterial orthologue DnaK are highly conserved molecular chaperones and a crucial part of the machinery responsible for protein folding and homeostasis. Hsp70 is a three-domain, 70 kDa protein that cycles between an ATP-bound state in which all three domains are securely coupled into one unit and an ADP-bound state in which they are loosely attached via a flexible interdomain linker. The Hsp70 presents an alluring novel therapeutic target since it is crucial for maintaining cellular proteostasis and is particularly crucial to cancer cells. We have performed molecular dynamics simulations of the SBD (substrate binding domain) along with the Lid domain in response to experimental efforts to identify small molecule inhibitors that impair the functioning of Hsp70. Our intent has been to characterize the motion of the SBD/Lid allosteric machinery and in, addition, to identify the effect of the PET16 molecule on this motion. Interestingly, we noticed the opening of the entire Lid domain in the apo-form of the dimer. The configuration of the open structure was very different from previously published structures (PDB 4JN4) of the open and docked conformation of the ATP bound form. MD simulations revealed the Lid to be capable of far greater dynamical excursions than has been anticipated by experimental structural biology. This is of value in future drug discovery efforts targeted to modulating Hsp70 activity. The PET16 molecule appears to be weakly bound and its effect on the dynamics of the complex is yet to be elucidated.


Assuntos
Proteínas de Escherichia coli , Simulação de Dinâmica Molecular , Animais , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
2.
J Biomol Struct Dyn ; : 1-19, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063068

RESUMO

The Hsp70 chaperone protein system is an essential component of the protein folding and homeostasis machinery in E.Coli. Hsp70 is a three domain, 70 kDa protein which functions as an allosteric system cycling between an ADP-bound state where the three domains are loosely coupled via a flexible interdomain linker and an ATP-bound state where they are tightly coupled into a single entity. The structure-function model of this protein proposes an allosteric connection between the 45 kDa Nucleotide Binding Domain (NBD) and the 25 kDa Substrate Binding Domain (SBD) and Lid Domain which operates through the inter NBD-SBD linker. X-Ray crystallography and NMR spectroscopy have provided structures of the end states of the functional cycle of this protein, bound to ADP and ATP. We have used MD simulations to study the transitions between these end states and allosteric communication in this system. Our results largely validate the experimentally derived allosteric model of function, but shed additional light on the flow of allosteric information in the SBD + Lid. Specifically, we find that the Lid domain has a double-hinged structure with the potential for greater conformational flexibility than was hitherto expected.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA