Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 127(2): 207-224, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32228120

RESUMO

RATIONALE: One goal of cardiac tissue engineering is the generation of a living, human pump in vitro that could replace animal models and eventually serve as an in vivo therapeutic. Models that replicate the geometrically complex structure of the heart, harboring chambers and large vessels with soft biomaterials, can be achieved using 3-dimensional bioprinting. Yet, inclusion of contiguous, living muscle to support pump function has not been achieved. This is largely due to the challenge of attaining high densities of cardiomyocytes-a notoriously nonproliferative cell type. An alternative strategy is to print with human induced pluripotent stem cells, which can proliferate to high densities and fill tissue spaces, and subsequently differentiate them into cardiomyocytes in situ. OBJECTIVE: To develop a bioink capable of promoting human induced pluripotent stem cell proliferation and cardiomyocyte differentiation to 3-dimensionally print electromechanically functional, chambered organoids composed of contiguous cardiac muscle. METHODS AND RESULTS: We optimized a photo-crosslinkable formulation of native ECM (extracellular matrix) proteins and used this bioink to 3-dimensionally print human induced pluripotent stem cell-laden structures with 2 chambers and a vessel inlet and outlet. After human induced pluripotent stem cells proliferated to a sufficient density, we differentiated the cells within the structure and demonstrated function of the resultant human chambered muscle pump. Human chambered muscle pumps demonstrated macroscale beating and continuous action potential propagation with responsiveness to drugs and pacing. The connected chambers allowed for perfusion and enabled replication of pressure/volume relationships fundamental to the study of heart function and remodeling with health and disease. CONCLUSIONS: This advance represents a critical step toward generating macroscale tissues, akin to aggregate-based organoids, but with the critical advantage of harboring geometric structures essential to the pump function of cardiac muscle. Looking forward, human chambered organoids of this type might also serve as a test bed for cardiac medical devices and eventually lead to therapeutic tissue grafting.


Assuntos
Bioimpressão/métodos , Diferenciação Celular , Miócitos Cardíacos/fisiologia , Organoides/fisiologia , Engenharia Tecidual/métodos , Potenciais de Ação , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Contração Miocárdica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Organoides/citologia , Organoides/metabolismo
2.
J Biomech Eng ; 142(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766738

RESUMO

Aortic aneurysms are inherently unpredictable. One can never be sure whether any given aneurysm may rupture or dissect. Clinically, the criteria for surgical intervention are based on size and growth rate, but it remains difficult to identify a high-risk aneurysm, which may require intervention before the cutoff criteria, versus an aneurysm than can be treated safely by more conservative measures. In this work, we created a computational microstructural model of a medial lamellar unit (MLU) incorporating (1) growth and remodeling laws applied directly to discrete, individual fibers, (2) separate but interacting fiber networks for collagen, elastin, and smooth muscle, (3) active and passive smooth-muscle cell mechanics, and (4) failure mechanics for all three fiber types. The MLU model was then used to study different pathologies and microstructural anomalies that may play a role in vascular growth and failure. Our model recapitulated many aspects of arterial remodeling under hypertension with no underlying genetic syndrome including remodeling dynamics, tissue mechanics, and failure. Syndromic effects (smooth muscle cell (SMC) dysfunction or elastin fragmentation) drastically changed the simulated remodeling process, tissue behavior, and tissue strength. Different underlying pathologies were able to produce similarly dilatated vessels with different failure properties, providing a partial explanation for the imperfect nature of aneurysm size as a predictor of outcome.


Assuntos
Aorta Abdominal , Animais , Miócitos de Músculo Liso
3.
Acta Biomater ; 163: 7-24, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36155097

RESUMO

Tissue growth and remodeling (G&R) is often central to disease etiology and progression, so understanding G&R is essential for understanding disease and developing effective therapies. While the state-of-the-art in this regard is animal and cellular models, recent advances in computational tools offer another avenue to investigate G&R. A major challenge for computational models is bridging from the cellular scale (at which changes are actually occurring) to the macroscopic, geometric-scale (at which physiological consequences arise). Thus, many computational models simplify one scale or another in the name of computational tractability. In this work, we develop a discrete-continuum modeling scheme for analyzing G&R, in which we apply changes directly to the discrete cell and extracellular matrix (ECM) architecture and pass those changes up to a finite-element macroscale geometry. We demonstrate the use of the model in three case-study scenarios: the media of a thick-walled artery, and the media and adventitia of a thick-walled artery, and chronic dissection of an arterial wall. We analyze each case in terms of the new and insightful data that can be gathered from this technique, and we compare our results from this model to several others. STATEMENT OF SIGNIFICANCE: This work is significant in that it provides a framework for combining discrete, microstructural- and cellular-scale models to the growth and remodeling of large tissue structures (such as the aorta). It is a significant advance in that it couples the microscopic remodeling with an existing macroscopic finite element model, making it relatively easy to use for a wide range of conceptual models. It has the potential to improve understanding of many growth and remodeling processes, such as organ formation during development and aneurysm formation, growth, and rupture.


Assuntos
Aneurisma , Matriz Extracelular , Animais , Estresse Mecânico , Artérias , Modelos Cardiovasculares
4.
J Mech Behav Biomed Mater ; 144: 105967, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329673

RESUMO

Multiscale mechanical models in biomaterials research have largely relied on simplifying the microstructure in order to make large-scale simulations tractable. The microscale simplifications often rely on approximations of the constituent distributions and assumptions on the deformation of the constituents. Of particular interest in biomechanics are fiber embedded materials, where simplified fiber distributions and assumed affinity in the fiber deformation greatly influence the mechanical behavior. The consequences of these assumptions are problematic when dealing with microscale mechanical phenomena such as cellular mechanotransduction in growth and remodeling, and fiber-level failure events during tissue failure. In this work, we propose a technique for coupling non-affine network models to finite element solvers, allowing for simulation of discrete microstructural phenomena within macroscopically complex geometries. The developed plugin is readily available as an open-source library for use with the bio-focused finite element software FEBio, and the description of the implementation allows for the adaptation to other finite element solvers.


Assuntos
Fenômenos Mecânicos , Mecanotransdução Celular , Estresse Mecânico , Análise de Elementos Finitos , Software , Simulação por Computador , Fenômenos Biomecânicos
5.
J Elast ; 145(1-2): 295-319, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36380845

RESUMO

The heterogeneous, nonlinear, anisotropic material behavior of biological tissues makes precise definition of an accurate constitutive model difficult. One possible solution to this issue would be to define microstructural elements and perform fully coupled multiscale simulation. However, for complex geometries and loading scenarios, the computational costs of such simulations can be prohibitive. Ideally then, we should seek a method that contains microstructural detail, but leverages the speed of classical continuum-based finite-element (FE) modeling. In this work, we demonstrate the use of the Holzapfel-Gasser-Ogden (HGO) model [1, 2] to fit the behavior of microstructural network models. We show that Delaunay microstructural networks can be fit to the HGO strain energy function by calculating fiber network strain energy and average fiber stretch ratio. We then use the HGO constitutive model in a FE framework to improve the speed of our hybrid model, and demonstrate that this method, combined with a material property update scheme, can match a full multiscale simulation. This method gives us flexibility in defining complex FE simulations that would be impossible, or at least prohibitively time consuming, in multiscale simulation, while still accounting for microstructural heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA