Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chromosome Res ; 29(2): 159-173, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33587225

RESUMO

CLASPs are key modulators of microtubule dynamics throughout the cell cycle. During mitosis, CLASPs independently associate with growing microtubule plus-ends and kinetochores and play essential roles in chromosome segregation. In a proteomic survey for human CLASP1-interacting proteins during mitosis, we have previously identified SOGA1 and SOGA2/MTCL1, whose mitotic roles remained uncharacterized. Here we performed an initial functional characterization of human SOGA1 and SOGA2/MTCL1 during mitosis. Using specific polyclonal antibodies raised against SOGA proteins, we confirmed their expression and reciprocal interaction with CLASP1 and CLASP2 during mitosis. In addition, we found that both SOGA1 and SOGA2/MTCL1 are phospho-regulated during mitosis by CDK1. Immunofluorescence analysis revealed that SOGA2/MTCL1 co-localizes with mitotic spindle microtubules and spindle poles throughout mitosis and both SOGA proteins are enriched at the midbody during mitotic exit/cytokinesis. GFP-tagging of SOGA2/MTCL1 further revealed a microtubule-independent localization at kinetochores. Live-cell imaging after siRNA-mediated knockdown of SOGA1 and SOGA2/MTCL1 showed that they are independently required for distinct aspects of chromosome segregation. Thus, SOGA1 and SOGA2/MTCL1 are bona fide CLASP-interacting proteins during mitosis required for faithful chromosome segregation in human cells.


Assuntos
Segregação de Cromossomos , Proteômica , Humanos , Cinetocoros , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Fuso Acromático
2.
Br J Cancer ; 118(12): 1586-1595, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29736010

RESUMO

BACKGROUND: Chromosomal instability (CIN) is a common trait of cancer characterised by the continuous gain and loss of chromosomes during mitosis. Excessive levels of CIN can suppress tumour growth, providing a possible therapeutic strategy. The Mps1/TTK kinase has been one of the prime targets to explore this concept, and indeed Mps1 inhibitors synergise with the spindle poison docetaxel in inhibiting the growth of tumours in mice. METHODS: To investigate how the combination of docetaxel and a Mps1 inhibitor (Cpd-5) promote tumour cell death, we treated mice transplanted with BRCA1-/-;TP53-/- mammary tumours with docetaxel and/or Cpd-5. The tumours were analysed regarding their histopathology, chromosome segregation errors, copy number variations and cell death to understand the mechanism of action of the drug combination. RESULTS: The enhanced efficacy of combining an Mps1 inhibitor with clinically relevant doses of docetaxel is associated with an increase in multipolar anaphases, aberrant nuclear morphologies and cell death. Tumours treated with docetaxel and Cpd-5 displayed more genomic deviations, indicating that chromosome stability is affected mostly in the combinatorial treatment. CONCLUSIONS: Our study shows that the synergy between taxanes and Mps1 inhibitors depends on increased errors in cell division, allowing further optimisation of this treatment regimen for cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Docetaxel/farmacologia , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Camundongos , Mitose/efeitos dos fármacos , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Paclitaxel/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 15(4): e0227592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343689

RESUMO

BMI1 is a core protein of the polycomb repressive complex 1 (PRC1) that is overexpressed in several cancer types, making it a promising target for cancer therapies. However, the underlying mechanisms and interactions associated with BMI1-induced tumorigenesis are often context-dependent and complex. Here, we performed a drug resistance screen on mutagenized human haploid HAP1 cells treated with BMI1 inhibitor PTC-318 to find new genetic and mechanistic features associated with BMI1-dependent cancer cell proliferation. Our screen identified NUMA1-mutations as the most significant inducer of PTC-318 cell death resistance. Independent validations on NUMA1-proficient HAP1 and non-small cell lung cancer cell lines exposed to BMI1 inhibition by PTC-318 or BMI1 knockdown resulted in cell death following mitotic arrest. Interestingly, cells with CRISPR-Cas9 derived NUMA1 knockout also showed a mitotic arrest phenotype following BMI1 inhibition but, contrary to cells with wildtype NUMA1, these cells were resistant to BMI1-dependent cell death. The current study brings new insights to BMI1 inhibition-induced mitotic lethality in cancer cells and presents a previously unknown role of NUMA1 in this process.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Complexo Repressor Polycomb 1/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Sistemas CRISPR-Cas/genética , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA