RESUMO
Honey bee (Apis mellifera L.) health is crucial for honey bee products and effective pollination, and it is closely associated with gut bacteria. Various factors such as reduced habitat, temperature, disease, and diet affect the health of honey bees by disturbing the homeostasis of the gut microbiota. In this study, high-throughput 16S rRNA gene sequencing was used to analyze the gut microbiota of honey bees subjected to seven diets over 5 days. Lactobacillus dominated the microbiota in all diets. Cage experiments (consumption, head protein content, and vitellogenin gene expression level) were conducted to verify the effect of the diet. Through a heatmap, the Diet2 (probiotic-supplemented) group was clustered together with the Beebread and honey group, showing high consumption (177.50 ± 26.16 mg/bee), moderately higher survival duration (29.00 ± 2.83 days), protein content in the head (312.62 ± 28.71 µg/mL), and diet digestibility (48.41 ± 1.90%). Additionally, we analyzed the correlation between gut microbiota and health-related indicators in honey bees fed each diet. Based on the overall results, we identified that probiotic-supplemented diets increased gut microbiota diversity and positively affected the overall health of individual honey bees.
RESUMO
Honeybees (Apis mellifera) are pollinating agents of economic importance. The role of the gut microbiome in honeybee health has become increasingly evident due to its relationship with immune function, growth, and development. Although their dynamics at various developmental stages have been documented, their dynamics during the era of colony collapse disorder and immunogenic potential, which are connected to the antagonistic immune response against pathogens, need to be elucidated. Using 16S rRNA gene Illumina sequencing, the results indicated changes in the gut microbiota with the developmental stage. The bacterial diversity of fifth stage larva was significantly different among the other age groups, in which Fructobacillus, Escherichia-Shigella, Bombella, and Tyzzerella were unique bacteria. In addition, the diversity of the worker bee microbiome was distinct from that of the younger microbiome. Lactobacillus and Gilliamella remained conserved throughout the developmental stages, while Bifidobacterium colonized only worker bees. Using an in silico approach, the production potential of lipopolysaccharide-endotoxin was predicted. Forager bees tend to have a higher abundance rate of Gram-negative bacteria. Our results revealed the evolutionary importance of some microbiome from the larval stage to the adult stage, providing insight into the potential dynamics of disease response and susceptibility. This finding provides a theoretical foundation for furthering the understanding of the function of the gut microbiota at various developmental stages related to probiotic development and immunogenic potential.
RESUMO
The nutritional quality of a colony significantly affects its health and strength, particularly because it is required for population growth in the early spring. We investigated the impact of various artificial pollen substitute diets on colony performance in the Republic of Korea during early spring, a critical period for colony health and growth. The colonies were provided with different diets, including the commercial product Megabee (positive control), our developed diet Test A, and four upgraded versions (Diet 1, Diet 2, Diet 3, and Diet 4) of Test A. The negative control group received no supplementary feed. Over 63 days, we observed 24 experimental colonies and assessed various parameters at the colony and individual levels. The results revealed that Diet 2 had the highest consumption and had the most positive impact on population growth, the capped brood area, colony weight, honey bees' weight, and vitellogenin levels. These findings suggested that Diet 2 is most attractive to honey bees and thus holds great promise for improving colony maintenance and development during the crucial early spring period.
RESUMO
Bioinformatics, the interdisciplinary field that combines biology, computer science, and data analysis, plays a pivotal role in advancing our understanding of life sciences. In the African context, where the diversity of biological resources and healthcare challenges is substantial, fostering bioinformatics literacy and proficiency among students is important. This perspective provides an overview of the state of bioinformatics literacy among African students, highlighting the significance, challenges, and potential solutions in addressing this critical educational gap. It proposes various strategies to enhance bioinformatics literacy among African students. These include expanding educational resources, fostering collaboration between institutions, and engaging students in research projects. By addressing the current challenges and implementing comprehensive strategies, African students can harness the power of bioinformatics to contribute to innovative solutions in healthcare, agriculture, and biodiversity conservation, ultimately advancing the continent's scientific capabilities and improving the quality of life for her people. In conclusion, promoting bioinformatics literacy among African students is imperative for the continent's scientific development and advancing frontiers of biological research.
RESUMO
The crucial role of the gut microbiome in various diseases has led to increased interest in interventions and therapeutics targeting the human microbiome. Accordingly, the current scoping review analyzed the diseases and interventions involved in gut microbiome research in Africa. The electronic databases of PubMed, Google Scholar, and Scopus were searched from inception to October 2021. This study identified 48 studies involving 7073 study participants. Of the 48 studies, 20 (42%) used interventions to modulate gut microbiota, whereas the remaining 28 (58%) did not. Out of the total African countries, only 13% were involved in intervention-based gut microbiome research, whereas a larger proportion of 67% were not involved in any gut microbiome research. The interventions used in gut microbiome research in Africa include supplements, natural products, educational approaches, associated pathogens, albendazole, fresh daily yogurt, iron-containing lipid-based nutrient supplements, fecal microbiota transplant, and prophylactic cotrimoxazole. This scoping review highlights the current state of gut microbiome research in Africa. The findings of this review can inform the design of future studies and interventions aimed at improving gut health in African populations.
Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , África , Suplementos NutricionaisRESUMO
BACKGROUND: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.
Assuntos
Produtos Biológicos , Mídias Sociais , HumanosRESUMO
COVID-19 has become a global infectious pandemic affecting the entire world with complications related to the lungs and compromised immune systems. Recently, cytokine storms, which are hallmarks of the disease, have been identified in most COVID-19 patients. In addition, vitamin D deficiency is increasingly appearing to be another element exposing COVID-19 patients to a preferential increase in their symptoms. In an effort to identify a possible link between cytokine storms and vitamin D deficiency to streamline a possible treatment, an in silico analysis using bioinformatics approach was performed using collections of highly expressed cytokines in both severe acute respiratory syndrome and COVID-19 patients (commonly elevated cytokines) as well as vitamin D deficiency-associated genes (VD). Gene Multiple Association Network Integration Algorithm was used for network interactions, whereas the Enrichr enrichment analysis tool was used for biological functions. The network analysis GLay clustering results indicated the vitamin D receptor as a possible link between these two groups. Furthermore, cell chemotaxis and chemotactic-related features were identified as significantly affected pathways, which serve as possible key players mitigating cytokine storms under low vitamin D availability.
Assuntos
COVID-19 , Deficiência de Vitamina D , Síndrome da Liberação de Citocina , Humanos , SARS-CoV-2 , Vitamina D , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genéticaRESUMO
The link between autism spectrum disorder (ASD) and the gut microbiome has received much attention, with special focus on gut-brain-axis immunological imbalances. Gastrointestinal problems are one of the major symptoms of ASD and are thought to be related to immune dysregulation. Therefore, in silico analysis was performed on mined data from 36 individuals with ASD and 21 control subjects, with an emphasis on lipid A endotoxin-producing bacteria and their lipopolysaccharide (LPS) metabolic pathways. Analysis of enzyme distribution among the 15 most abundant genera in both groups revealed that almost all these genera utilized five early-stage enzymes responsible for catalyzing the nine conserved lipid A synthesis steps. However, Haemophilus and Escherichia, which were significantly more abundant in individuals with ASD than in the control subjects, possess a complete set of essential lipid A synthesis enzymes. Furthermore, the 10 genera with the greatest increase in individuals with ASD showed high potential for producing late-stage lipid A products. Collectively, these results suggested that the synthesis rate of immunogenic LPS end products is likely to increase in individuals with ASD, which may be related to their gastrointestinal symptoms and elevated inflammatory conditions.