Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 14(3): 298-305, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354484

RESUMO

The role of autophagy in plasma cells is unknown. Here we found notable autophagic activity in both differentiating and long-lived plasma cells and investigated its function through the use of mice with conditional deficiency in the essential autophagic molecule Atg5 in B cells. Atg5(-/-) differentiating plasma cells had a larger endoplasmic reticulum (ER) and more ER stress signaling than did their wild-type counterparts, which led to higher expression of the transcriptional repressor Blimp-1 and immunoglobulins and more antibody secretion. The enhanced immunoglobulin synthesis was associated with less intracellular ATP and more death of mutant plasma cells, which identified an unsuspected autophagy-dependent cytoprotective trade-off between immunoglobulin synthesis and viability. In vivo, mice with conditional deficiency in Atg5 in B cells had defective antibody responses, complete selection in the bone marrow for plasma cells that escaped Atg5 deletion and fewer antigen-specific long-lived bone marrow plasma cells than did wild-type mice, despite having normal germinal center responses. Thus, autophagy is specifically required for plasma cell homeostasis and long-lived humoral immunity.


Assuntos
Autofagia , Linfócitos B/metabolismo , Imunoglobulinas/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Plasmócitos/imunologia , Trifosfato de Adenosina , Animais , Formação de Anticorpos , Proteína 5 Relacionada à Autofagia , Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Centro Germinativo/imunologia , Homeostase , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Plasmócitos/citologia , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição/biossíntese
2.
Proc Natl Acad Sci U S A ; 112(5): E450-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25609671

RESUMO

In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell. In VHQ52(NT) mice, IgA replaced IgM to drive early B-cell development and peripheral B-cell maturation. In VHQ52(NT) animals, over 20% of mature B cells disrupted the single productive, nonautoimmune IgH rearrangement through VH replacement and exchanged it with a highly diversified pool of IgH specificities. VH replacement occurred in early pro-B cells, was independent of pre-B-cell receptor signaling, and involved predominantly one adjacent VH germ-line gene. VH replacement was also identified in 5% of peripheral B cells of mice inheriting a different productive VH rearrangement expressed in the form of an IgM H chain. In summary, editing of a productive IgH rearrangement through VH replacement can account for up to 20% of the IgH repertoire expressed by mature B cells.


Assuntos
Clonagem de Organismos , Imunoglobulina A/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Animais , Sequência de Bases , Camundongos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais
3.
Sci Rep ; 12(1): 19658, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385627

RESUMO

Severe/critical COVID-19 is associated with immune dysregulation and plasmatic SARS-CoV-2 detection (i.e. RNAemia). We detailed the association of SARS-CoV-2 RNAemia with immune responses in COVID-19 patients at the end of the first week of disease. We enrolled patients hospitalized in acute phase of ascertained SARS-CoV-2 pneumonia, and evaluated SARS-CoV-2 RNAemia, plasmatic cytokines, activated/pro-cytolytic T-cells phenotypes, SARS-CoV-2-specific cytokine-producing T-cells (IL-2, IFN-γ, TNF-α, IL-4, IL-17A), simultaneous Th1-cytokines production (polyfunctionality) and amount (iMFI). The humoral responses were assessed with anti-S1/S2 IgG, anti-RBD total-Ig, IgM, IgA, IgG1 and IgG3, neutralization and antibody-dependent cellular cytotoxicity (ADCC). Out of 54 patients, 27 had detectable viremia (viremic). Albeit comparable age and co-morbidities, viremic more frequently required ventilatory support, with a trend to higher death. Viremic displayed higher pro-inflammatory cytokines (IFN-α, IL-6), lower activated T-cells (HLA-DR+CD38+), lower functional SARS-CoV-2-specific T-cells (IFN-γ+CD4+, TNF-α+CD8+, IL-4+CD8+, IL-2+TNF-α+CD4+, and IL-2+TNF-α+CD4+ iMFI) and SARS-CoV-2-specific Abs (anti-S IgG, anti-RBD total-Ig, IgM, IgG1, IgG3; ID50, %ADCC). These data suggest a link between SARS-CoV-2 RNAemia at the end of the first stage of disease and immune dysregulation. Whether high ab initium viral burden and/or intrinsic host factors contribute to immune dysregulation in severe COVID-19 remains to be elucidated, to further inform strategies of targeted therapeutic interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Interleucina-2 , Fator de Necrose Tumoral alfa , Interleucina-4 , Memória Imunológica , Citocinas , Imunoglobulina G , Imunoglobulina M
4.
Front Immunol ; 13: 959138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713383

RESUMO

Serine-Threonine kinase CK2 supports malignant B-lymphocyte growth but its role in B-cell development and activation is largely unknown. Here, we describe the first B-cell specific knockout (KO) mouse model of the ß regulatory subunit of CK2. CK2ßKO mice present an increase in marginal zone (MZ) and a reduction in follicular B cells, suggesting a role for CK2 in the regulation of the B cell receptor (BCR) and NOTCH2 signaling pathways. Biochemical analyses demonstrate an increased activation of the NOTCH2 pathway in CK2ßKO animals, which sustains MZ B-cell development. Transcriptomic analyses indicate alterations in biological processes involved in immune response and B-cell activation. Upon sheep red blood cells (SRBC) immunization CK2ßKO mice exhibit enlarged germinal centers (GCs) but display a limited capacity to generate class-switched GC B cells and immunoglobulins. In vitro assays highlight that B cells lacking CK2ß have an impaired signaling downstream of BCR, Toll-like receptor, CD40, and IL-4R all crucial for B-cell activation and antigen presenting efficiency. Somatic hypermutations analysis upon 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Chicken Gamma Globulin (NP-CGG) evidences a reduced NP-specific W33L mutation frequency in CK2ßKO mice suggesting the importance of the ß subunit in sustaining antibody affinity maturation. Lastly, since diffuse large B cell lymphoma (DLBCL) cells derive from GC or post-GC B cells and rely on CK2 for their survival, we sought to investigate the consequences of CK2 inhibition on B cell signaling in DLBCL cells. In line with the observations in our murine model, CK2 inactivation leads to signaling defects in pathways that are essential for malignant B-lymphocyte activation.


Assuntos
Caseína Quinase II , Ativação Linfocitária , Animais , Camundongos , Ovinos , Caseína Quinase II/genética , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Diferenciação Celular
5.
Sci Rep ; 6: 33900, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27652524

RESUMO

In vertebrates, microorganisms are recognized by pathogen recognition receptors (PRRs). Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of genes. Within these genes, the cytokines family plays a crucial function because of its role in adaptive immunity induction and in tissue-specific functional regulation, such as tissue repair and tissue homeostasis during steady state conditions. Within the myeloid compartment, dendritic cells (DCs) release a variety of inflammatory cytokines in response to microbes. In this study, we show that BMDCs release IL-22 directly upon PRRs activation without the need of IL-23 signaling as reported for other IL22-producing cells. Moreover, we demonstrate that cytokine IL-22 is rapidly released in a cell-specific manner as macrophages are not able to produce IL-22 through the same PRRs system. In addition, we characterize the intracellular signaling cascade required for IL-22 release in BMDCs. Myd88, MEK1/2, NFkb and AhR, but not p38, NFAT, and RORgt, were found to be involved in IL-22 regulation in DCs. Our study suggests that BMDCs possess a unique intracellular molecular plasticity which, once activated, directs different BMDCs functions in a cell-specific manner.

6.
J Clin Invest ; 123(12): 5009-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24200695

RESUMO

Protection against deadly pathogens requires the production of high-affinity antibodies by B cells, which are generated in germinal centers (GCs). Alteration of the GC developmental program is common in many B cell malignancies. Identification of regulators of the GC response is crucial to develop targeted therapies for GC B cell dysfunctions, including lymphomas. The histone H3 lysine 27 methyltransferase enhancer of zeste homolog 2 (EZH2) is highly expressed in GC B cells and is often constitutively activated in GC-derived non-Hodgkin lymphomas (NHLs). The function of EZH2 in GC B cells remains largely unknown. Herein, we show that Ezh2 inactivation in mouse GC B cells caused profound impairment of GC responses, memory B cell formation, and humoral immunity. EZH2 protected GC B cells against activation-induced cytidine deaminase (AID) mutagenesis, facilitated cell cycle progression, and silenced plasma cell determinant and tumor suppressor B-lymphocyte-induced maturation protein 1 (BLIMP1). EZH2 inhibition in NHL cells induced BLIMP1, which impaired tumor growth. In conclusion, EZH2 sustains AID function and prevents terminal differentiation of GC B cells, which allows antibody diversification and affinity maturation. Dysregulation of the GC reaction by constitutively active EZH2 facilitates lymphomagenesis and identifies EZH2 as a possible therapeutic target in NHL and other GC-derived B cell diseases.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/enzimologia , Linfoma não Hodgkin/etiologia , Complexo Repressor Polycomb 2/fisiologia , Animais , Apoptose , Linfócitos B/patologia , Ciclo Celular , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Citidina Desaminase/fisiologia , Dano ao DNA , Proteína Potenciadora do Homólogo 2 de Zeste , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Inativação Gênica , Centro Germinativo/imunologia , Centro Germinativo/patologia , Imunidade Humoral , Memória Imunológica , Linfoma não Hodgkin/enzimologia , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Linfopoese , Metilação , Camundongos , Camundongos Transgênicos , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA