Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(22): 8875-8879, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776223

RESUMO

This work presents a benchtop method for collecting the room temperature gas phase infrared (IR) action spectra of protonated amino acids and their isomers. The adopted setup uses a minimally modified commercial electrospray ionization linear ion trap mass spectrometer (ESI-LIT-MS) coupled to a broadband continuous wave (cw) quantum cascade laser (QCL) source. This approach leverages messenger assisted action spectroscopic techniques using water-tagged molecular ions with complex formation, irradiation, and subsequent analysis, all taking place within a single linear ion trap stage. This configuration thus circumvents the use of multiple mass selection and analysis stages, cryogenic buffer cells, and complex high-power laser systems typically called upon to execute these techniques. The benchtop action spectrometer is used to collect the 935-1600 cm-1 (6.2-10.7 µm) IR action spectrum of a collection of amino acids and a dipeptide with results cross referenced against literature examples obtained with a free electron laser source. Recorded IR spectra are used for the analysis of binary mixture samples composed of constitutional isomers α-alanine and ß-alanine with ratios determined to ∼4% measurement uncertainty without the aid of a front-end separation stage. This turn-key QCL-based approach is a major step in showing the viability of tag-based action spectroscopic techniques for use in future in situ planetary science sensors and general analytical applications.

2.
Rev Sci Instrum ; 82(9): 093105, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974571

RESUMO

We report the first demonstration of a continuous wave coherent source covering 2.48-2.75 THz, with greater than 10% instantaneous tuning bandwidth and having 1-14 µW of output power at room temperature. This source is based on a 91.8-101.8 GHz synthesizer followed by a power amplifier and three cascaded frequency triplers. It demonstrates for the first time that purely electronic solid-state sources can generate a useful amount of power in a region of the electromagnetic spectrum where lasers (solid state or gas) were previously the only available coherent sources. The bandwidth, agility, and operability of this THz source have enabled wideband, high resolution spectroscopic measurements of water, methanol, and carbon monoxide with a resolution and signal-to-noise ratio unmatched by any other existing system, providing new insight in the physics of these molecules. Furthermore, the power and optical beam quality are high enough to observe the Lamb-dip effect in water. The source frequency has an absolute accuracy better than 1 part in 10(12) and the spectrometer achieves sub-Doppler frequency resolution better than 1 part in 10(8). The harmonic purity is better than 25 dB. This source can serve as a coherent signal for absorption spectroscopy, a local oscillator for a variety of heterodyne systems and can be used as a method for precision control of more powerful but much less frequency agile quantum mechanical terahertz sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA