RESUMO
Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.
Assuntos
Aves , Metabolismo Energético , Cadeia Alimentar , Agricultura Florestal , Florestas , Mamíferos , Clima Tropical , Animais , Biodiversidade , Biomassa , Aves/fisiologia , Bornéu , Mamíferos/fisiologia , Óleo de Palmeira , Árvores/crescimento & desenvolvimento , EcologiaRESUMO
Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO2 exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha-1 yr-1 within moderately logged plots and 5.23 ± 1.23 Mg C ha-1 yr-1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world's tropical forests may be considerably lower than currently estimated.
Assuntos
Carbono , Ecossistema , Clima Tropical , Biomassa , Atmosfera , SoloRESUMO
Soil respiration is the largest carbon efflux from the terrestrial ecosystem to the atmosphere, and selective logging influences soil respiration via changes in abiotic (temperature, moisture) and biotic (biomass, productivity, quantity and quality of necromass inputs) drivers. Logged forests are a predominant feature of the tropical forest landscape, their area exceeding that of intact forest. We quantified both total and component (root, mycorrhiza, litter, and soil organic matter, SOM) soil respiration in logged (n = 5) and old-growth (n = 6) forest plots in Malaysian Borneo, a region which is a global hotspot for emission from forest degradation. We constructed a detailed below-ground carbon budget including organic carbon inputs into the system via litterfall and root turnover. Total soil respiration was significantly higher in logged forests than in old-growth forests (14.3 ± 0.23 and 12.7 ± 0.60 Mg C ha-1 year-1 , respectively, p = 0.037). This was mainly due to the higher SOM respiration in logged forests (55 ± 3.1% of the total respiration in logged forests vs. 50 ± 3.0% in old-growth forests). In old-growth forests, annual SOM respiration was equal to the organic carbon inputs into the soil (difference between SOM respiration and inputs 0.18 Mg C ha-1 year-1 , with 90% confidence intervals of -0.41 and 0.74 Mg C ha-1 year-1 ), indicating that the system is in equilibrium, while in logged forests SOM respiration exceeded the inputs by 4.2 Mg C ha-1 year-1 (90% CI of 3.6 and 4.9 Mg C ha-1 year-1 ), indicating that the soil is losing carbon. These results contribute towards understanding the impact of logging on below-ground carbon dynamics, which is one of the key uncertainties in estimating emissions from forest degradation. This study demonstrates how significant perturbation of the below-ground carbon balance, and consequent net soil carbon emissions, can persist for decades after a logging event in tropical forests.
Assuntos
Carbono , Solo , Bornéu , Ecossistema , Respiração , ÁrvoresRESUMO
Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
Assuntos
Ecossistema , Floresta Úmida , África , Biomassa , Florestas , Raízes de Plantas , Solo , América do Sul , Árvores , Clima TropicalRESUMO
Leaf venation networks evolved along several functional axes, including resource transport, damage resistance, mechanical strength, and construction cost. Because functions may depend on architectural features at different scales, network architecture may vary across spatial scales to satisfy functional tradeoffs. We develop a framework for quantifying network architecture with multiscale statistics describing elongation ratios, circularity ratios, vein density, and minimum spanning tree ratios. We quantify vein networks for leaves of 260 southeast Asian tree species in samples of up to 2 cm2 , pairing multiscale statistics with traits representing axes of resource transport, damage resistance, mechanical strength, and cost. We show that these multiscale statistics clearly differentiate species' architecture and delineate a phenotype space that shifts at larger scales; functional linkages vary with scale and are weak, with vein density, minimum spanning tree ratio, and circularity ratio linked to mechanical strength (measured by force to punch) and elongation ratio and circularity ratio linked to damage resistance (measured by tannins); and phylogenetic conservatism of network architecture is low but scale-dependent. This work provides tools to quantify the function and evolution of venation networks. Future studies including primary and secondary veins may uncover additional insights.
Assuntos
Folhas de Planta , Fenótipo , FilogeniaRESUMO
Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha-1 year-1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests.
Assuntos
Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Bornéu , Carbono , Ciclo do Carbono , Conservação dos Recursos Naturais , Agricultura Florestal , MadeiraRESUMO
Rainforests provide vital ecosystem services that are underpinned by plant-soil interactions. The forests of Borneo are globally important reservoirs of biodiversity and carbon, but a significant proportion of the forest that remains after large-scale agricultural conversion has been extensively modified due to timber harvest. We have limited understanding of how selective logging affects ecosystem functions including biogeochemical cycles driven by soil microbes. In this study, we sampled soil from logging gaps and co-located intact lowland dipterocarp rainforest in Borneo. We characterised soil bacterial and fungal communities and physicochemical properties and determined soil functioning in terms of enzyme activity, nutrient supply rates, and microbial heterotrophic respiration. Soil microbial biomass, alpha diversity, and most soil properties and functions were resistant to logging. However, we found logging significantly shifted soil bacterial and fungal community composition, reduced the abundance of ectomycorrhizal fungi, increased the abundance of arbuscular mycorrhizal fungi, and reduced soil inorganic phosphorous concentration and nitrate supply rate, suggesting some downregulation of nutrient cycling. Within gaps, canopy openness was negatively related to ectomycorrhizal abundance and phosphomonoesterase activity and positively related to ammonium supply rate, suggesting control on soil phosphorus and nitrogen cycles via functional shifts in fungal communities. We found some evidence for reduced soil heterotrophic respiration with greater logging disturbance. Overall, our results demonstrate that while many soil microbial community attributes, soil properties, and functions may be resistant to selective logging, logging can significantly impact the composition and abundance of key soil microbial groups linked to the regulation of vital nutrient and carbon cycles in tropical forests.
RESUMO
The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.
Assuntos
El Niño Oscilação Sul/efeitos adversos , Florestas , Árvores , Clima Tropical , Arecaceae , Sudeste Asiático , Bornéu , Mudança Climática , Secas , Ecologia , Humanos , Malásia , Folhas de Planta , Floresta ÚmidaRESUMO
The data set contains images of leaf venation networks obtained from tree species in Malaysian Borneo. The data set contains 726 leaves from 295 species comprising 50 families, sampled from eight forest plots in Sabah. Image extents are approximately 1 × 1 cm, or 50 megapixels. All images contain a region of interest in which all veins have been hand traced. The complete data set includes over 30 billion pixels, of which more than 600 million have been validated by hand tracing. These images are suitable for morphological characterization of these species, as well as for training of machine-learning algorithms that segment biological networks from images. Data are made available under the Open Data Commons Attribution License. You are free to copy, distribute, and use the database; to produce works from the database; and to modify, transform, and build upon the database. You must attribute any public use of the database, or works produced from the database, in the manner specified in the license. For any use or redistribution of the database, or works produced from it, you must make clear to others the license of the database and keep intact any notices on the original database.