Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Inj ; 35(7): 842-849, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678100

RESUMO

Background: Patients in intensive care units with traumatic brain injuries (TBI) frequently present acid-base abnormalities and coagulability disorders, which complicate their condition.Objective: To identify protonation through in silico simulations of molecules involved in the process of coagulation in standard laboratory tests.Materials and methods: Ten patients with TBI were selected from the intensive care unit in addition to ten "healthy control subjects", and another nine patients as "disease control subjects"; the latter being a comparative group, corresponding to subjects with diabetes mellitus 2 (DM2). Fibrinogen, FVII, FVIII, FIX, FX, and D-dimer in the presence of acidification were evaluated in 20 healthy subjects in order to compare clinical results with molecular dynamics (MD), and to explain proton interactions and coagulation molecules.Results: The TBI group presented a slight, non-significant increase in D-dimer; but this was not present in "disease control subjects". Levels of fibrinogen, FVII, FIX, FX, and D-dimer were affected in the presence of acidification. We observed that various specific residues of coagulation factors "trap" ions.Conclusion: Protonation of tissue factor and factor VIIa may favor anticoagulant mechanisms, and protonation does not affect ligand binding sites of GPIIb/IIIa (PAC1) suggesting other causes for the low affinity to PAC1.


Assuntos
Lesões Encefálicas Traumáticas , Prótons , Coagulação Sanguínea , Lesões Encefálicas Traumáticas/complicações , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA