Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Molecules ; 27(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36144805

RESUMO

A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance. Thus, the capturing ability is limited by the objects' magnetic properties, size, and flow rate. Despite the importance of a thorough investigation of this process to prove the concept of magnetically controlled drug delivery, it has not been sufficiently investigated. Here, we studied the efficiency of polyelectrolyte capsules' capture by the external magnetic field source depending on their size, the magnetic nanoparticle payload, and the suspension's flow rate. Additionally, we estimated the possibility of magnetically trapping cells containing magnetic capsules in flow and evaluated cells' membrane integrity after that. These results are required to prove the possibility of the magnetically controlled delivery of the encapsulated medicine to the affected area with its subsequent retention, as well as the capability to capture magnetically labeled cells in flow.


Assuntos
Sistemas de Liberação de Medicamentos , Magnetismo , Cápsulas/química , Campos Magnéticos , Polieletrólitos
3.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230871

RESUMO

Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.


Assuntos
Separação Celular/métodos , Aprendizado Profundo , Diagnóstico por Imagem/métodos , Citometria de Fluxo/métodos , Automação , Circulação Sanguínea , Separação Celular/instrumentação , Rastreamento de Células , Diagnóstico por Imagem/instrumentação , Testes Diagnósticos de Rotina , Citometria de Fluxo/instrumentação , Corantes Fluorescentes , Doenças Hematológicas/diagnóstico , Humanos , Magnetismo , Células Neoplásicas Circulantes/patologia , Doenças Raras/diagnóstico , Coloração e Rotulagem/métodos
4.
ACS Infect Dis ; 9(5): 1137-1149, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37104539

RESUMO

The search for novel therapeutic strategies to treat fungal diseases is of special importance nowadays given the emerging threat of drug resistance. Various particulate delivery systems are extensively being developing to enhance bioavailability, site-specific penetration, and therapeutic efficacy of antimycotics. Recently, we have designed a novel topical formulation for griseofulvin (Gf) drug, which is currently commercially available in oral dosage forms due to its limited skin permeation. The proposed formulation is based on vaterite carriers that enabled effective incorporation and ultrasonically assisted delivery of Gf to hair follicles improving its dermal bioavailability. Here, we evaluated the effect of ultrasound on the viability of murine fibroblasts co-incubated with either Gf-loaded carriers or a free form of Gf and investigated the influence of both forms on different subpopulations of murine blood cells. The study revealed no sufficient cyto- and hemotoxicity of the carriers, even at the highest investigated concentrations. We also conducted a series of in vivo experiments to assess their multi-dose dermal toxicity and antifungal efficiency. Visual and histological examinations of the skin in healthy rabbits showed no obvious adverse effects after US-assisted application of the Gf-loaded carriers. At the same time, investigation of therapeutic efficiency for the designed formulation in comparison with free Gf and isoconazole drugs in a guinea pig model of trichophytosis revealed that the vaterite-based form of Gf provided the most rapid and effective cure of infected animals together with the reduction in therapeutic procedure number. These findings pave the way to improving antifungal therapy of superficial mycoses and justifying further preclinical studies.


Assuntos
Antifúngicos , Micoses , Camundongos , Animais , Coelhos , Cobaias , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Griseofulvina/farmacologia , Griseofulvina/uso terapêutico , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/farmacologia , Carbonato de Cálcio/uso terapêutico , Pele/metabolismo , Micoses/tratamento farmacológico
5.
Biomed Opt Express ; 12(1): 380-394, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659080

RESUMO

Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA