Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(34): 5751-5760, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994326

RESUMO

Dissociative recombination (DR) of K2+ and Rb2+ ions is one of the most important processes in K and Rb diode-pumped alkali lasers (DPALs) strongly affecting their power. We report on the calculations of potential energy curves of the K2+ and Rb2+ molecular ions and of the diabatic 1Σ+, 3Σ+, 1Δ, 3Δ, 1Π, 3Π, 1Φ, and 3Φ valence states of K2 and Rb2 that provide the routes for DR of the ions. These curves are required for subsequent calculations of DR rate constants. It was found that the most likely DR routes for K are along the dissociative states 61Σg+, 53Σu+, and 23Δu and for Rb only 61Σg+. The excited states of K atoms produced by DR are 42P and 52P. Most of the Rb atoms produced by DR are in the 62P excited state, while a small fraction of the atoms produced by the less likely routes along two states of Rb2 are in the 52P state. This conclusion contradicts the kinetic scheme for K and Rb DPAL proposed elsewhere, and thus the kinetic schemes of these DPALs should be modified according to the present results.

2.
J Chem Phys ; 157(1): 014502, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803824

RESUMO

Modeling of phase diagrams and, in particular, the anomalous re-entrant melting curves of alkali metals is an open challenge for interatomic potentials. Machine learning-based interatomic potentials have shown promise in overcoming this challenge, unlike earlier embedded atom-based approaches. We introduce a relatively simple and inexpensive approach to develop, train, and validate a neural network-based, wide-ranging interatomic potential transferable across both temperature and pressure. This approach is based on training the potential at high pressures only in the liquid phase and on validating its transferability on the relatively easy-to-calculate cold compression curve. Our approach is demonstrated on the phase diagram of Rb for which we reproduce the cold compression curve over the Rb-I (BCC), Rb-II (FCC), and Rb-V (tI4) phases, followed by the high-pressure melting curve including the re-entry after the maximum and then the minimum at the triple liquid-FCC-BCC point. Furthermore, our potential is able to partially capture even the very recently reported liquid-liquid transition in Rb, indicating the utility of machine learning-based potentials.

3.
Langmuir ; 37(30): 9098-9110, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34293867

RESUMO

The templated assembly of nanoparticles has been limited so far to yield only discontinuous nanoparticle clusters confined within lithographically patterned cavities. Here, we explored the templated assembly of nanoparticles into continuous 2D structures, using lithographically patterned templates with topographical features sized as the assembled nanoparticles. We found that these features act as nucleation centers, whose exact arrangement determines four possible assembly regimes (i) rotated, (ii) disordered, (iii) closely packed, and (iv) unpacked. These regimes produce structures strikingly different from their geometry, orientation, long-range and short-range orders, and packing density. Interestingly, for templates with relatively distant nucleation centers, these four regimes are replaced with three new ones, which produce large monocrystalline domains that are either (i) uniformly rotated, (ii) uniformly aligned, or (iii) nonuniformly rotated relative to the nucleation lattice. We rationalized our experimental data using a mathematical model, which examines all the alignment possibilities between the nucleation centers and the ideal hexagonal assembly. Our finding provides a new approach for the à la carte obtainment of various nanoscale structures unachievable by natural self-assembly and opens a route for the fabrication of numerous functional nanodevices and nanosystems that could not be realized so far by the standard bottom-up approach.

4.
ACS Appl Mater Interfaces ; 15(12): 15668-15675, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920349

RESUMO

We describe the unusual properties of γ-SnSe, a new orthorhombic binary phase in the tin monoselenide system. This phase exhibits an ultranarrow band gap under standard pressure and temperature conditions, leading to high conductivity under ambient conditions. Density functional calculations identified the similarity and difference between the new γ-SnSe phase and the conventional α-SnSe based on the electron localization function. Very good agreement was obtained for the band gap width between the band structure calculations and the experiment, and insight provided for the mechanism of reduction in the band gap. The unique properties of this material may render it useful for applications such as thermal imaging devices and solar cells.

5.
Nanoscale Adv ; 4(14): 2996-3009, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133525

RESUMO

Anomalous pressure dependence of Raman frequencies of carbon nanowires encapsulated in carbon nanotubes has been recently reported. Two hypotheses have been proposed to explain this phenomenon in linear carbon chains: softening of a carbon bond with pressure or charge transfer to the chain. However, carbon chains bend easily under stress, although stable structures under these conditions have yet to be discovered. In this study, we model linear and bent carbon nanowires under compression, including both stable and metastable structures. The structures, electronic properties, and vibrational frequencies are obtained through first-principles calculations within density functional theory. We find that polyyne, the dimerized linear ground-state structure of carbon chains at zero strain, is not stable under compression for an infinite carbon chain. Instead, the chain transforms into two possible configurations, a previously unknown three-dimensional helical shape or a two-dimensional sinusoidal shape. These structures can be modeled using an analytical atomistic force-constant model or with a continuum approach. In the continuum approach, an eigenvalue wave equation describes the energy and geometry of the chain. Moreover, this equation produces excited (metastable) structural states and can be applied to other one-dimensional systems. The wave equation formulation indicates that the much-pursued concept of Young's modulus in one-dimensional chains is ill-defined. Finally, the Raman anomaly under compression is not observed within the atomistic force-constant model contrary to assumptions in the literature. Instead, this anomaly can be understood using a model in which charge transfer between the nanotube and the nanowire occurs upon contact.

6.
Materials (Basel) ; 15(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079394

RESUMO

The energetic and mechanical stability of interstitial point defects in binary rock-salt materials were studied using the first-principles method. A novel, stable, and energetically competitive interstitial site (base-interstitial) was identified for anion interstitials in rock-salts. The formation energies of base-interstitial defects were compared with well-explored tetrahedral (body-interstitial) and split interstitials and were found to be energetically highly competitive. For alkali halides and silver bromide, the lowest formation energies are associated with the base-interstitial site and the <110> split interstitial, which are therefore the predominant interstitial sites. However, split interstitials were found to be the energetically preferred configuration in metal monochalcogenide systems. Electronic band structures are affected by the presence of interstitial defects in rock-salt structures. In particular, the Fermi level is shifted below the valence band maxima for the body, base, and split interstitials in metal halides, indicating p-type conductivity. However, the Fermi level remains within the bandgap for metal monochalcogenides, indicating no preferred conductivity for base- and split-interstitial defects. Allowing the defects to be charged changes the relative stability of the interstitial sites. However, the new base-interstitial site remains preferred over a range of potentials for alkali halides. The anion base-interstitial is found to form a triatomic entity with the nearest lattice anions that affect the electronic structure relative to the body interstitial. The discovery of a new interstitial site affects our understanding of defects in binary rock-salts, including structure and dynamics as well as associated thermodynamic and kinetic properties that are interstitial dependent.

7.
Materials (Basel) ; 14(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772077

RESUMO

Tin monoxide, SnO, and its analog, lead monoxide, PbO, have the same tetragonal P4/nmm structure, shaped by nonbonding dispersion forces and lone pairs. The high-pressure phases of SnO and PbO have been explored in several experimental and theoretical studies, with conflicting results. In this study, the high-pressure structures of SnO and PbO are investigated using density functional theory calculations combined with an evolutionary algorithm to identify novel high-pressure phases. We propose that the monoclinic P21/m SnO and orthorhombic Pmmn PbO phases, which are metastable at 0 GPa, are a slight rearrangement of the tetragonal P4/nmm-layered structure. These orthorhombic (and their closely related monoclinic) phases become more favored than the tetragonal phase upon compression. In particular, the transition pressures to the orthorhombic γ-phase Pmn21 of SnO/PbO and the monoclinic phase P21/m of SnO are found to be consistent with experimental studies. Two new high-pressure SnO/PbO polymorphs are predicted: the orthorhombic Pbcm phase of SnO and the monoclinic C2/m of PbO. These phases are stabilized in our calculations when P > 65 GPa and P > 50 GPa, respectively. The weakening of the lone pair localization and elastic instability are the main drivers of pressure-induced phase transitions. Modulations of the SnO/PbO electronic structure due to structural transitions upon compression are also discussed.

8.
Materials (Basel) ; 14(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072298

RESUMO

CALPHAD (CALculation of PHAse Diagram) is a useful tool to construct phase diagrams of various materials under different thermodynamic conditions. Researchers have extended the use of the CALPHAD method to nanophase diagrams and pressure phase diagrams. In this study, the phase diagram of an arbitrary A-B nanoparticle system under pressure was investigated. The effects of the interaction parameter and excess volume were investigated with increasing pressure. The eutectic temperature was found to decrease in most cases, except when the interaction parameter in the liquid was zero and that in the solid was positive, while the excess volume parameter of the liquid was positive. Under these conditions, the eutectic temperature increased with increasing pressure.

9.
J Chem Phys ; 133(9): 094506, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20831323

RESUMO

The sound velocity of some liquid elements of groups IV, V, and VI, as reported in the literature, displays anomalous features that set them apart from other liquid metals. In an effort to determine a possible common origin of these anomalies, extensive neutron diffraction measurements of liquid Bi and Sb were carried out over a wide temperature range. The structure factors of liquid Sb and Bi were determined as a function of temperature. The structure of the two molten metals was carefully analyzed with respect to peak locations, widths, and coordination numbers in their respective radial distribution function. The width of the peaks in the radial distribution functions was not found to increase and even decreased within a certain temperature range. This anomalous temperature dependence of the peak widths correlates with the anomalous temperature dependence of the sound velocity. This correlation may be accounted for by increased rigidity of the liquid structure with temperature. A phenomenological correlation between the peak width and the sound velocity is suggested for metallic melts and is found to agree with available data for normal and anomalous elemental liquids in groups IV-VI.

10.
Nanoscale ; 11(36): 17104-17110, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31508641

RESUMO

New semiconducting metastable cubic phases have been recently discovered in the tin monosulfide and monoselenide systems. Surface energy calculations and experimental studies indicate that this cubic π-phase is stabilized by specific ligand adsorption on the surface. In this work, it is shown experimentally that the synthesis carried out using mixtures of oleylamine and oleylammonium chloride (OACl) surfactants results in the cubic phase, transforming the growth from orthorhombic to cubic nanoparticles with increasing OACl concentration up to a limiting point. Complementary ab initio calculations find that adsorbed ligands lower the surface energies for both the cubic phase and the orthorhombic phase, relative to the pristine surfaces. The decrease in the surface energy increases with ligand coverage. Stronger binding energies to the cubic phase suggest a higher coverage, and therefore preferential stabilization of this phase. Upon further increasing the coverage, the surface energy becomes negative, effectively destabilizing the particles in agreement with experimental observations. Bonding analysis shows that Cl bonds to Sn and replaces missing Sn-S bonds at the surface of the cubic structure. In the competing orthorhombic layered phase, Cl also bonds to a Sn atom but at the expense of one of the Sn-S bonds of this Sn atom. This observation can explain the trends of the surface energies. This combined experimental and computational analysis sheds light on the stabilization processes of these nano-materials and indicates the path to improve synthetic routes.

11.
Materials (Basel) ; 12(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810238

RESUMO

Towards the construction of pressure-dependent phase diagrams of binary alloy systems, both thermophysical measurements and thermodynamic modeling are employed. High-accuracy measurements of sound velocity, density, and electrical resistivity were performed for selected metallic elements from columns III to V and their alloys in the liquid phase. Sound velocity measurements were made using ultrasonic techniques, density measurements using the gamma radiation attenuation method, and electrical resistivity measurements were performed using the four probe method. Sound velocity and density data, measured at ambient pressure, were incorporated into a thermodynamic model to calculate the pressure dependence of binary phase diagrams. Electrical resistivity measurements were performed on binary systems to study phase separation and identify phase transitions in the liquid state.

12.
Adv Mater ; 30(41): e1706285, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29944187

RESUMO

Cubic π-phase monochalcogenides (MX, M = Sn, Ge; X = S, Se) are an emerging new class of materials that has recently been discovered. Here, their thermodynamic stability, progress in synthetic routes, properties, and prospective applications are reviewed. The thermodynamic stability is demonstrated through density functional theory total energy and phonon spectra calculations, which show that the π-phase polytype is stable across the monochalcogenide family. To date, only π-phase tin monochalcogenides have been observed experimentally while π-phase Ge-monochalcogenides are predicted to be stable but are yet to be experimentally realized. Various synthetic preparation protocols of π-SnS and π-SnSe are described, focusing on surfactant-assisted nanoparticle synthesis and chemical deposition of thin films from aqueous-bath compositions. These techniques provide materials with different surface energies, which are likely to play a major role in stabilizing the π-phase in nanoscale materials. The properties of this newly discovered family of semiconducting materials are discussed in comparison with their conventional orthorhombic polymorphs. These could benefit a number of photovoltaic and optoelectronic applications since, apart from being cubic, they also possess characteristic advantages, such as moderately low toxicity and natural abundance.

13.
Rev Sci Instrum ; 86(4): 043902, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933866

RESUMO

We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA