Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731296

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the feasibility of obtaining MSCs from adipose tissue and characterizing them using established assays. METHODS: Bovine adipose MSCs (BvAdMSCs) were isolated using in-house optimized tissue digestion protocols and characterized by performing a colony formation assay, cell growth assessments, cell surface marker analysis by immunocytochemistry and flow cytometry, osteogenic and adipogenic differentiation, and secretion of indoleamine 2,3-dioxygenease (IDO). RESULTS: Our results demonstrate the feasibility of successful MSC isolation and culture expansion from bovine adipose tissues with characteristic features of colony formation, in vitro multilineage differentiation into osteogenic and adipogenic lineages, and cell surface marker expression of CD105, CD73, CD90, CD44, and CD166 with negative expression of CD45. BvAdMSCs secreted significant amounts of IDO with or without interferon-gamma stimulation, indicating ability for immunomodulation. CONCLUSIONS: We report a viable approach to obtaining autologous adipose-derived MSCs that can be applied as potential adjuvant cell therapy for tissue repair and regeneration in cattle. Our methodology can be utilized by veterinary cell therapy labs for preparing MSCs for disease management in cattle.

2.
Front Med Technol ; 6: 1301004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566843

RESUMO

Introduction: Immersive virtual reality (VR) based laboratory demonstrations have been gaining traction in STEM education as they can provide virtual hands-on experience. VR can also facilitate experiential and visual learning and enhanced retention. However, several optimizations of the implementation, in-depth analyses of advantages and trade-offs of the technology, and assessment of receptivity of modern techniques in STEM education are required to ensure better utilization of VR-based labs. Methods: In this study, we developed VR-based demonstrations for a biomolecular engineering laboratory and assessed their effectiveness using surveys containing free responses and 5-point Likert scale-based questions. Insta360 Pro2 camera and Meta Quest 2 headsets were used in combination with an in-person lab. A cohort of 53 students watched the experimental demonstration on VR headsets in the lab after a brief lab overview in person and then performed the experiments in the lab. Results: Only 28.29% of students reported experiencing some form of discomfort after using the advanced VR equipment as opposed to 63.63% of students from the previous cohort. About 40% of the students reported that VR eliminated or reduced auditory and visual distractions from the environment, the length of the videos was appropriate, and they received enough information to understand the tasks. Discussion: The traditional lab method was found to be more suitable for explaining background information and lab concepts while the VR was found to be suitable for demonstrating lab procedures and tasks. Analyzing open-ended questions revealed several factors and recommendations to overcome the potential challenges and pitfalls of integrating VR with traditional modes of learning. This study provides key insights to help optimize the implementation of immersive VR to effectively supplement in-person learning experiences.

3.
J Biol Eng ; 17(1): 44, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434264

RESUMO

Mesenchymal stem/stromal cells (MSCs) have been carefully examined to have tremendous potential in regenerative medicine. With their immunomodulatory and regenerative properties, MSCs have numerous applications within the clinical sector. MSCs have the properties of multilineage differentiation, paracrine signaling, and can be isolated from various tissues, which makes them a key candidate for applications in numerous organ systems. To accentuate the importance of MSC therapy for a range of clinical indications, this review highlights MSC-specific studies on the musculoskeletal, nervous, cardiovascular, and immune systems where most trials are reported. Furthermore, an updated list of the different types of MSCs used in clinical trials, as well as the key characteristics of each type of MSCs are included. Many of the studies mentioned revolve around the properties of MSC, such as exosome usage and MSC co-cultures with other cell types. It is worth noting that MSC clinical usage is not limited to these four systems, and MSCs continue to be tested to repair, regenerate, or modulate other diseased or injured organ systems. This review provides an updated compilation of MSCs in clinical trials that paves the way for improvement in the field of MSC therapy.

4.
Biochimie ; 207: 33-48, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36427681

RESUMO

Mesenchymal stem/stromal cells (MSCs) are multipotent somatic cells that have been widely explored in the field of regenerative medicine. MSCs possess the ability to secrete soluble factors as well as lipid bound extracellular vesicles (EVs). MSCs have gained increased interest and attention as a result of their therapeutic properties, which are thought to be attributed to their secretome. However, while the use of MSCs as whole cells pose heterogeneity concerns and survival issues post-transplantation, such limitations are absent in cell-free EV-based treatments. EVs derived from MSCs are promising therapeutic agents for a range of clinical conditions and disorders owing to their immunomodulatory, pro-regenerative, anti-inflammatory, and antifibrotic activity. Recent successes with preclinical studies using EVs for repair and regeneration of damaged tissues such as cardiac tissue, lung, liver, pancreas, bone, skin, cornea, and blood diseases are discussed in this review. We also discuss delivery strategies of EVs using biomaterials as delivery vehicles through systemic or local administration. Despite its effectiveness in preclinical investigations, the application of MSC-EV in clinical settings will necessitate careful consideration surrounding issues such as: i) scalability and isolation, ii) biodistribution, iii) targeting specific tissues, iv) quantification and characterization, and v) safety and efficacy of dosage. The future of EVs in regenerative medicine is promising yet still needs further investigation on enhancing the efficacy, scalability, and potency for clinical applications.


Assuntos
Vesículas Extracelulares , Mesoderma , Regeneração , Medicina Regenerativa , Células-Tronco , Vesículas Extracelulares/classificação , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Medicina Regenerativa/normas , Medicina Regenerativa/tendências , Mesoderma/citologia , Células-Tronco/citologia , Humanos , Animais , Biotecnologia/métodos , Biotecnologia/normas , Biotecnologia/tendências
5.
J Biol Eng ; 16(1): 20, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941621

RESUMO

BACKGROUND: The Covid-19 pandemic caused a sudden shift towards remote learning, moving classes to online formats. Not exempt from this switch, laboratory courses traditionally taught in-person were also moved to remote methods, costing students the opportunity to learn these skills hands-on. In order for instructors to provide course materials effectively and engagingly, non-traditional methods should be explored. Virtual reality (VR) has become more accessible in recent years. VR simulations have been used for many years as educational tools in high-risk settings such as flight or medical simulations. Immersive VR videos implemented in a remote laboratory course could provide the students with an engaging and suitable learning experience. To test the effectiveness of VR videos as a tool for remote education, VR videos of the laboratory component of a Biomolecular Engineering course were provided to students. A survey was distributed for students to self-report their experience with the videos. The survey contained quantitative and qualitative ratings of VR as an educational tool. RESULTS: The survey showed that students (~ 89% strongly agree or agree) believed the videos provided the opportunity to work at their own pace and were an appropriate length. While ~ 74% of students said that the videos provided enough information to understand the tasks, a small percentage felt that the videos improved their retention (~ 16%) and understanding (~ 9%) of the course material. About 28% of the students responded positively when asked about how VR videos improved their engagement with the material. ~ 30% reported confidence in applying the skills learned in the videos in the future and ~ 43% believe the VR videos were an acceptable alternative to in-person labs. Two-thirds of students reported feeling some form of discomfort while viewing the VR videos and 54% reported not using the headset for the videos and using the 3D video feature instead. CONCLUSIONS: As many students reported the videos containing appropriate information, the content of the videos was not an issue. A combination of improved camera quality with motion stability, more comfortable headsets, and a reduction in editing issues could greatly improve the quality and effectiveness of VR videos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA