Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Geroscience ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294474

RESUMO

Protein folding in the endoplasmic reticulum (ER) requires a high ratio of oxidized to reduced glutathione (GSSG/rGSH). Since the GSSG/rGSH depends on total glutathione (tGSH = GSSG + rGSH) levels, we hypothesized that limiting GSH biosynthesis will ameliorate protein misfolding by enhancing the ER oxidative milieu. As a proof-of-concept, we used DL-buthionine-(S,R)-sulfoximine (BSO) to inhibit GSH biosynthesis in Akita mice, which are prone to proinsulin misfolding. We conducted a 2-week intervention to investigate if BSO was safe and a 6-week intervention to find its effect on glucose intolerance. In both cohorts, male heterozygous Akita (AK) and wild-type (WT) mice were continuously administered 15 mM BSO. No adverse effects were observed on body weight, food intake, and water intake in either cohort. Unaltered levels of plasma aspartate and alanine aminotransferases, and cystatin-C, indicate that BSO was safe. BSO-induced decreases in tGSH were tissue-dependent with maximal effects in the kidneys, where it altered the expression of genes associated with GSH biosynthesis, redox status, and proteostasis. BSO treatment decreased random blood glucose levels to 80% and 67% of levels in untreated mice in short-term and long-term cohorts, respectively, and 6-h fasting blood glucose to 82% and 74% ï»¿of levels in untreated mice, respectively. BSO also improved glucose tolerance by 37% in AK mice in the long-term cohort, without affecting insulin tolerance. Neither glucose tolerance nor insulin tolerance were affected in WT. Data indicate that BSO might treat misfolded proinsulin-induced glucose intolerance. Future studies should investigate the effect of BSO on proinsulin misfolding and if it improves glucose intolerance in individuals with Mutant Insulin Diabetes of Youth.

2.
Aging Cell ; 21(12): e13739, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403077

RESUMO

Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.


Assuntos
Aminoácidos Sulfúricos , Cisteína , Masculino , Feminino , Camundongos , Humanos , Animais , Cisteína/metabolismo , Metabolismo dos Lipídeos , Estudos Transversais , Aminoácidos Sulfúricos/metabolismo , Metionina/metabolismo , Obesidade/metabolismo , Serina/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 299(3): R728-39, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20538896

RESUMO

Dietary methionine restriction (MR) is a mimetic of chronic dietary restriction (DR) in the sense that MR increases rodent longevity, but without food restriction. We report here that MR also persistently increases total energy expenditure (EE) and limits fat deposition despite increasing weight-specific food consumption. In Fischer 344 (F344) rats consuming control or MR diets for 3, 9, and 20 mo, mean EE was 1.5-fold higher in MR vs. control rats, primarily due to higher EE during the night at all ages. The day-to-night transition produced a twofold higher heat increment of feeding (3.0 degrees C vs. 1.5 degrees C) in MR vs. controls and an exaggerated increase in respiratory quotient (RQ) to values greater than 1, indicative of the interconversion of glucose to lipid by de novo lipogenesis. The simultaneous inhibition of glucose utilization and shift to fat oxidation during the day was also more complete in MR (RQ approximately 0.75) vs. controls (RQ approximately 0.85). Dietary MR produced a rapid and persistent increase in uncoupling protein 1 expression in brown (BAT) and white adipose tissue (WAT) in conjunction with decreased leptin and increased adiponectin levels in serum, suggesting that remodeling of the metabolic and endocrine function of adipose tissue may have an important role in the overall increase in EE. We conclude that the hyperphagic response to dietary MR is matched to a coordinated increase in uncoupled respiration, suggesting the engagement of a nutrient-sensing mechanism, which compensates for limited methionine through integrated effects on energy homeostasis.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Privação de Alimentos , Metionina/deficiência , Consumo de Oxigênio , Tecido Adiposo , Animais , Regulação da Temperatura Corporal/fisiologia , Ritmo Circadiano , Dieta , Gorduras na Dieta , Regulação da Expressão Gênica/fisiologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Atividade Motora , Obesidade , Ratos , Ratos Endogâmicos , Proteína Desacopladora 1
4.
Aging Cell ; 19(7): e13177, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32573078

RESUMO

Trade-offs in life-history traits are clinically and mechanistically important. Sulfur amino acid restriction (SAAR) extends lifespan. But whether this benefit comes at the cost of other traits including stress resistance and growth is unclear. We investigated the effects of SAAR on growth markers (body weight, IGF1, and IGFBP3) and physiological stresses. Male-F344 rats were fed control (0.86% Met) and SAAR (0.17% Met) diets starting at 2, 10, and 20 months. Rats were injected with keyhole-limpet-hemocyanin (KLH) to measure immune responses (anti-KLH-IgM, anti-KLH-IgG, and delayed-type-hypersensitivity [DTH]). Markers of ER stress (FGF21 and adiponectin), detoxification capacity (glutathione [GSH] concentrations, GSH-S-transferase [GST], and cytochrome-P450 -reductase [CPR] activities), and low-grade inflammation (C-reactive protein [CRP]) were also determined. SAAR decreased body weight, liver weight, food intake, plasma IGF1, and IGFBP3; the effect size diminished with increasing age-at-onset. SAAR increased FGF21 and adiponectin, but stress damage markers GRP78 and Xbp1s/us were unchanged, suggesting that ER stress is hormetic. SAAR increased hepatic GST activity despite lower GSH, but CPR activity was unchanged, indicative of enhanced detoxification capacity. Other stress markers were either uncompromised (CRP, anti-KLH-IgM, and DTH) or slightly lower (anti-KLH-IgG). Increases in stress markers were similar across all ages-at-onset, except for adiponectin, which peaked at 2 months. Overall, SAAR did not compromise stress responses and resulted in maximal benefits with young-onset. In survival studies, median lifespan extension with initiation at 52 weeks was 7 weeks (p = .05); less than the 33.5-week extension observed in our previous study with 7-week initiation. Findings support SAAR translational studies and the need to optimize Met dose based on age-at-onset.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Biomarcadores/metabolismo , Idade de Início , Animais , Masculino , Ratos , Ratos Endogâmicos F344
5.
Geroscience ; 42(1): 287-297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31728897

RESUMO

Dietary methionine restriction (MR) has been found to enhance longevity across many species. We hypothesized that MR might enhance longevity in part by delaying or inhibiting age-related disease processes. To this end, male Fischer 344 rats were fed control (CF, 0.86% methionine) or MR (0.17% methionine) diets throughout their life until sacrifice at approximately 30 months of age, and histopathology was performed to identify the incidence and progression of two important aging-related pathologies, namely, chronic progressive nephropathy (CPN) and testicular tumorigenesis. Although kidney pathology was observed in 87% CF rats and CPN in 62% of CF animals, no evidence of kidney disease was observed in MR rats. Consistent with the absence of renal pathology, urinary albumin levels were lower in the MR group compared to controls throughout the study, with over a six-fold difference between the groups at 30 months of age. Biomarkers associated with renal disease, namely, clusterin, cystatin C, and ß-2 microglobulin, were reduced following 18 months of MR. A reduction in testicular tumor incidence from 88% in CF to 22% in MR rats was also observed. These results suggest that MR may lead to metabolic and cellular changes providing protection against age-related diseases.


Assuntos
Envelhecimento , Dieta , Doenças Urogenitais Masculinas/prevenção & controle , Metionina , Animais , Rim , Masculino , Ratos , Ratos Endogâmicos F344
6.
Aging Cell ; 6(5): 673-88, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17874999

RESUMO

Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and white adipose tissue (WAT) of Fischer 344 (F344) male rats using Affymetrix RAE 230 arrays and validated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on 18 genes. As expected, age had a substantial effect on transcription on both tissues, although only 21% of cardiac age-associated genes were also altered in WAT. Gene set enrichment analysis revealed coordinated small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities in aging between heart and WAT. CR had very different effects on these two tissues at the transcriptional level. In heart, very few age-associated expression changes were affected by CR, while in WAT, CR suppressed a substantial subset of the age-associated changes. Genes unaltered by aging but altered by CR were identified in WAT but not heart. Most interestingly, we identified a gene expression signature associated with mammalian target of rapamycin (mTOR) activity that was down-regulated with age but preserved by CR in both WAT and heart. In addition, lipid metabolism genes, particularly those associated with peroxisome proliferator-activated receptor gamma (PPARgamma)-mediated adipogenesis were reduced with age but preserved with CR in WAT. These results highlight tissue-specific differences in the gene expression response to CR and support a role for CR-mediated preservation of mTOR activity and adipogenesis in aging WAT.


Assuntos
Tecido Adiposo Branco/metabolismo , Envelhecimento/genética , Restrição Calórica , Regulação da Expressão Gênica , Miocárdio/metabolismo , Transcrição Gênica , Adipogenia , Animais , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Quinases/genética , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR
7.
Ann N Y Acad Sci ; 1418(1): 80-94, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377163

RESUMO

The mechanisms underlying life span extension by sulfur amino acid restriction (SAAR) are unclear. Cysteine and methionine are essential for the biosynthesis of proteins and glutathione (GSH), a major redox buffer in the endoplasmic reticulum (ER). We hypothesized that SAAR alters protein synthesis by modulating the redox milieu. Male F344-rats were fed control (CD: 0.86% methionine without cysteine) and SAAR diets (0.17% methionine without cysteine) for 12 weeks. Growth rates, food intake, cysteine and GSH levels, proteins associated with redox status and translation, and fractional protein synthesis rates (FSRs) were determined in liver. Despite a 40% higher food intake, growth rates for SAAR rats were 27% of those fed CD. Hepatic free cysteine in SAAR rats was 55% compared with CD rats. SAAR altered tissue distribution of GSH, as hepatic and erythrocytic levels were 56% and 196% of those in CD rats. Lower GSH levels did not induce ER stress (i.e., unchanged expression of Xbp1s , Chop, and Grp78), but activated PERK and its substrates eIF2-α and NRF2. SAAR-induced changes in translation-initiation machinery (higher p-eIF2-α and 4E-BP1, and lower eIF4G-1) resulted in slower protein synthesis rates (53% of CD). Proteins involved in the antioxidant response (NRF2, KEAP1, GCLM, and NQO1) and protein folding (PDI and ERO1-α) were increased in SAAR. Lower FSR and efficient protein folding might be improving proteostasis in SAAR.


Assuntos
Aminoácidos Sulfúricos/farmacologia , Dieta , Biossíntese de Proteínas , Proteínas/metabolismo , Aminoácidos Sulfúricos/administração & dosagem , Animais , Biomarcadores/metabolismo , Cisteína/metabolismo , Estresse do Retículo Endoplasmático , Eritrócitos/metabolismo , Comportamento Alimentar , Glutationa/sangue , Glutationa/metabolismo , Crescimento , Fígado/metabolismo , Longevidade , Masculino , Tamanho do Órgão/efeitos dos fármacos , Oxirredução , Ratos , Ratos Endogâmicos F344
8.
Aging Cell ; 5(4): 305-14, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16800846

RESUMO

Reduced dietary methionine intake (0.17% methionine, MR) and calorie restriction (CR) prolong lifespan in male Fischer 344 rats. Although the mechanisms are unclear, both regimens feature lower body weight and reductions in adiposity. Reduced fat deposition in CR is linked to preservation of insulin responsiveness in older animals. These studies examine the relationship between insulin responsiveness and visceral fat in MR and test whether, despite lower food intake observed in MR animals, decreased visceral fat accretion and preservation of insulin sensitivity is not secondary to CR. Accordingly, rats pair fed (pf) control diet (0.86% methinone, CF) to match the food intake of MR for 80 weeks exhibit insulin, glucose, and leptin levels similar to control-fed animals and comparable amounts of visceral fat. Conversely, MR rats show significantly reduced visceral fat compared to CF and PF with concomitant decreases in basal insulin, glucose, and leptin, and increased adiponectin and triiodothyronine. Daily energy expenditure in MR animals significantly exceeds that of both PF and CF. In a separate cohort, insulin responses of older MR animals as measured by oral glucose challenge are similar to young animals. Longitudinal assessments of MR and CF through 112 weeks of age reveal that MR prevents age-associated increases in serum lipids. By 16 weeks, MR animals show a 40% reduction in insulin-like growth factor-1 (IGF-1) that is sustained throughout life; CF IGF-1 levels decline much later, beginning at 112 weeks. Collectively, the results indicate that MR reduces visceral fat and preserves insulin activity in aging rats independent of energy restriction.


Assuntos
Adiposidade , Envelhecimento , Peso Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Insulina/sangue , Metionina/deficiência , Tecido Adiposo/efeitos dos fármacos , Animais , Composição Corporal/efeitos dos fármacos , Colesterol/metabolismo , Ingestão de Energia , Teste de Tolerância a Glucose , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo , Triglicerídeos/metabolismo
9.
Exp Gerontol ; 48(7): 654-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22819757

RESUMO

Restriction of dietary methionine by 80% slows the progression of aged-related diseases and prolongs lifespan in rodents. A salient feature of the methionine restriction phenotype is the significant reduction of adipose tissue mass, which is associated with improvement of insulin sensitivity. These beneficial effects of MR involve a host of metabolic adaptations leading to increased mitochondrial biogenesis and function, elevated energy expenditure, changes of lipid and carbohydrate homeostasis, and decreased oxidative damage and inflammation. This review summarizes observations from MR studies and provides insight about potential mediators of tissue-specific responses associated with MR's favorable metabolic effects that contribute to health and lifespan extension.


Assuntos
Envelhecimento/metabolismo , Dieta , Metabolismo Energético , Metionina/deficiência , Adaptação Fisiológica , Adiposidade , Fatores Etários , Animais , Humanos , Resistência à Insulina , Camundongos , Estresse Oxidativo , Fenótipo , Ratos , Roedores
10.
Metabolism ; 62(11): 1651-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23928105

RESUMO

OBJECTIVE: This study investigated the effects of dietary methionine restriction (MR) on the progression of established hepatic steatosis in the leptin-deficient ob/ob mouse. MATERIAL/METHODS: Ten-week-old ob/ob mice were fed diets containing 0.86% (control-fed; CF) or 0.12% methionine (MR) for 14 weeks. At 14 weeks, liver and fat were excised and blood was collected for analysis. In another study, blood was collected to determine in vivo triglyceride (TG) and very-low-density lipoprotein (VLDL) secretion rates. Liver histology was conducted to determine the severity of steatosis. Hepatic TG, free fatty acid levels, and fatty acid oxidation (FAO) were also measured. Gene expression was analyzed by quantitative PCR. RESULTS: MR reversed the severity of steatosis in the ob/ob mouse. This was accompanied by reduced body weight despite similar weight-specific food intake. Compared with the CF group, hepatic TG levels were significantly reduced in response to MR, but adipose tissue weight was not decreased. MR reduced insulin and HOMA ratios but increased total and high-molecular-weight adiponectin levels. Scd1 gene expression was significantly downregulated, while Acadvl, Hadha, and Hadhb were upregulated in MR, corresponding with increased ß-hydroxybutyrate levels and a trend toward increased FAO. The VLDL secretion rate was also significantly increased in the MR mice, as were the mRNA levels of ApoB and Mttp. The expression of inflammatory markers, such as Tnf-α and Ccr2, was also downregulated by MR. CONCLUSIONS: Our data indicate that MR reverses steatosis in the ob/ob mouse liver by promoting FAO, increasing the export of lipids, and reducing obesity-related inflammatory responses.


Assuntos
Ácidos Graxos/metabolismo , Fígado Gorduroso/prevenção & controle , Leptina/deficiência , Metabolismo dos Lipídeos , Fígado/metabolismo , Metionina/administração & dosagem , Metionina/farmacologia , Obesidade/metabolismo , Ácido 3-Hidroxibutírico/sangue , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta , Progressão da Doença , Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Homeostase , Inflamação/etiologia , Inflamação/metabolismo , Insulina/metabolismo , Lipoproteínas VLDL/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade/sangue , Obesidade/patologia , Oxirredução , Índice de Gravidade de Doença , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA