Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 212: 108351, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028020

RESUMO

The innate immune response is crucial for defense against virus infections where the complement system, coagulation cascade and natural antibodies play key roles. These immune components are interconnected in an intricate network and are tightly regulated to maintain homeostasis and avoid uncontrolled immune responses. Many viruses in turn have evolved to modulate these interactions through various strategies to evade innate immune activation. This review summarizes the current understanding on viral strategies to inhibit the activation of complement and coagulation cascades, evade natural antibody-mediated clearance and utilize complement regulatory mechanisms to their advantage.


Assuntos
Anticorpos/imunologia , Coagulação Sanguínea/imunologia , Ativação do Complemento/imunologia , Imunidade Humoral/imunologia , Imunidade Inata/imunologia , Viroses/imunologia , Vírus/patogenicidade , Animais , Humanos , Evasão da Resposta Imune/imunologia
2.
NPJ Vaccines ; 8(1): 172, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932282

RESUMO

The flavivirus envelope protein is a class II fusion protein that drives flavivirus-cell membrane fusion. The membrane fusion process is triggered by the conformational change of the E protein from dimer in the virion to trimer, which involves the rearrangement of three domains, EDI, EDII, and EDIII. The movement between EDI and EDII initiates the formation of the E protein trimer. The EDI-EDII hinge region utilizes four motifs to exert the hinge effect at the interdomain region and is crucial for the membrane fusion activity of the E protein. Using West Nile virus (WNV) NY99 strain derived from an infectious clone, we investigated the role of eight flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region in the conformational change of E protein from dimer to trimer and viral entry. Single mutations of the E-A54, E-I130, E-I135, E-I196, and E-Y201 residues affected infectivity. Importantly, the E-A54I and E-Y201P mutations fully attenuated the mouse neuroinvasive phenotype of WNV. The results suggest that multiple flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region play a critical role in the structure-function of the E protein and some contribute to the virulence phenotype of flaviviruses as demonstrated by the attenuation of the mouse neuroinvasive phenotype of WNV. Thus, as a proof of concept, residues in the EDI-EDII hinge region are proposed targets to engineer attenuating mutations for inclusion in the rational design of candidate live-attenuated flavivirus vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA