RESUMO
OBJECTIVE: To investigate whether milk polar lipids (PL) impact human intestinal lipid absorption, metabolism, microbiota and associated markers of cardiometabolic health. DESIGN: A double-blind, randomised controlled 4-week study involving 58 postmenopausal women was used to assess the chronic effects of milk PL consumption (0, 3 or 5 g-PL/day) on lipid metabolism and gut microbiota. The acute effects of milk PL on intestinal absorption and metabolism of cholesterol were assessed in a randomised controlled crossover study using tracers in ileostomy patients. RESULTS: Over 4 weeks, milk PL significantly reduced fasting and postprandial plasma concentrations of cholesterol and surrogate lipid markers of cardiovascular disease risk, including total/high-density lipoprotein-cholesterol and apolipoprotein (Apo)B/ApoA1 ratios. The highest PL dose preferentially induced a decreased number of intestine-derived chylomicron particles. Also, milk PL increased faecal loss of coprostanol, a gut-derived metabolite of cholesterol, but major bacterial populations and faecal short-chain fatty acids were not affected by milk PL, regardless of the dose. Acute ingestion of milk PL by ileostomy patients shows that milk PL decreased cholesterol absorption and increased cholesterol-ileal efflux, which can be explained by the observed co-excretion with milk sphingomyelin in the gut. CONCLUSION: The present data demonstrate for the first time in humans that milk PL can improve the cardiometabolic health by decreasing several lipid cardiovascular markers, notably through a reduced intestinal cholesterol absorption involving specific interactions in the gut, without disturbing the major bacterial phyla of gut microbiota. TRIAL REGISTRATION NUMBER: NCT02099032 and NCT02146339; Results.
Assuntos
Doenças Cardiovasculares/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Sobrepeso/metabolismo , Esfingomielinas/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Colestanol/metabolismo , Colesterol/metabolismo , HDL-Colesterol/sangue , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Emulsificantes/farmacologia , Fezes/química , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Ileostomia , Absorção Intestinal/efeitos dos fármacos , Lipídeos/administração & dosagem , Lipídeos/análise , Pessoa de Meia-Idade , Leite/química , Pós-Menopausa , Fatores de RiscoRESUMO
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N-3 polyunsaturated fatty acids (n-3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n-3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 µM of PAL without or with 50 µM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n-3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n-3PUFA, but only EPA and DHA increased PAL ß-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial ß-oxidation.
Assuntos
Ácidos Graxos Ômega-3/farmacologia , Mioblastos Esqueléticos/efeitos dos fármacos , Palmitatos/toxicidade , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Glucose/metabolismo , Resistência à Insulina , Isoenzimas/fisiologia , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Mioblastos Esqueléticos/metabolismo , Fosforilação , Proteína Quinase C/fisiologia , Proteína Quinase C-thetaRESUMO
BACKGROUND: Saturated fatty acid-rich high fat (HF) diets trigger abdominal adiposity, insulin resistance, type 2 diabetes and cardiac dysfunction. This study was aimed at evaluating the effects of nascent obesity on the cardiac function of animals fed a high-fat diet and at analyzing the mechanisms by which these alterations occurred at the level of coronary reserve. MATERIALS AND METHODS: Rats were fed a control (C) or a HF diet containing high proportions of saturated fatty acids for 3 months. Thereafter, their cardiac function was evaluated in vivo using a pressure probe inserted into the cavity of the left ventricle. Their heart was isolated, perfused iso-volumetrically according to the Langendorff mode and the coronary reserve was evaluated by determining the endothelial-dependent (EDV) and endothelial-independent (EIV) vasodilatations in the absence and presence of endothelial nitric oxide synthase and cyclooxygenase inhibitors (L-NAME and indomethacin). The fatty acid composition of cardiac phospholipids was then evaluated. RESULTS: Although all the HF-fed rats increased their abdominal adiposity, some of them did not gain body weight (HF- group) compared to the C group whereas other ones had a higher body weight (HF+). All HF rats displayed a higher in vivo cardiac activity associated with an increased EDV. In the HF- group, the improved EDV was due to an increase in the endothelial cell vasodilatation activity whereas in the HF+ group, the enhanced EDV resulted from an improved sensitivity of coronary smooth muscle cells to nitric oxide. Furthermore, in the HF- group the main pathway implicated in the EDV was the NOS pathway while in the HF+ group the COX pathway. CONCLUSIONS: Nascent obesity-induced improvement of cardiac function may be supported by an enhanced coronary reserve occurring via different mechanisms. These mechanisms implicate either the endothelial cells activity or the smooth muscle cells sensitivity depending on the body adiposity of the animals.
Assuntos
Adiposidade/fisiologia , Vasos Coronários/fisiologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/fisiopatologia , Vasodilatação/fisiologia , Animais , Vasos Coronários/citologia , Masculino , Obesidade/metabolismo , Distribuição Aleatória , Ratos , Ratos WistarRESUMO
The effects of ruminant (R) trans-fatty acids (TFA) on the risk of CVD are still under debate. It could be argued that the lack of the effect of R-TFA may be the result of the small amount of their intake. Taking into consideration the growing available data from intervention studies, we carried out a systematic review and meta-regression to assess the impact of R-TFA intake levels on changes in the total cholesterol: HDL-cholesterol (TC:HDL-C) ratio. A systematic review of the literature was conducted and thirteen randomised clinical trials were included, yielding a total of twenty-three independent experimental groups of subjects. A univariate random-effects meta-regression approach was used to quantify the relationship between the dose of R-TFA and changes in the TC:HDL-C ratio. To consider several potential modifiers such as subject and dietary characteristics, a multivariate regression analysis was performed. We found no relationship between R-TFA intake levels of up to 4.19% of daily energy intake (EI) and changes in cardiovascular risk factors such as TC:HDL-C and LDL-cholesterol (LDL-C):HDL-C ratios. In addition, a multivariate regression analysis that included other dietary variables, as well as subject baseline characteristics, confirmed that doses of R-TFA did not significantly influence the changes in the lipid ratio. Our findings showed that doses of R-TFA did not influence the changes in the ratios of plasma TC:HDL-C and LDL-C:HDL-C. These data suggest that TFA from natural sources, at least at the current levels of intake and up to 4.19% EI, have no adverse effects on these key CVD risk markers in healthy people.
Assuntos
Doenças Cardiovasculares/etiologia , Colesterol/sangue , Dieta , Gorduras na Dieta/efeitos adversos , Ruminantes , Ácidos Graxos trans/administração & dosagem , Animais , Doenças Cardiovasculares/sangue , Humanos , Ácidos Graxos trans/efeitos adversosRESUMO
INTRODUCTION: Cachexia is strongly associated with digestive cancers, particularly oesogastric cancer. Mitochondria in adipose tissue are involved in the regulation of metabolism and physiopathology of cancer cachexia in animal studies. Chemotherapeutic regimens used to control tumour development could also alter mitochondrial function in adipose tissue. We hypothesise that cachexia induces an increase in adipose tissue mitochondrial energy metabolism and that chemotherapy can mitigate this. The purpose of the ChiFMeOE study is to identify adipocyte factors involved in the energy imbalance associated with the cachectic process and their response to chemotherapeutic treatments in patients with oesogastric cancer. METHODS AND ANALYSIS: ChiFMeOE is a single-centre observational study that will prospectively include 60 patients referred to chemotherapy and surgery for oesophageal and gastro-oesophageal junction adenocarcinomas at the University Hospital of Clermont-Ferrand, France. Visceral and subcutaneous adipose tissue biopsies will be collected during surgery scheduled before and after neoadjuvant chemotherapy administration, as well as cachexia and nutritional assessment. The primary outcome is the maximum mitochondrial respiration rate (Vmax) measured by high-resolution respirometry. Secondary outcomes are other mitochondrial parameters (ie, enzymatic activities, proteins content and gene expression), tumour characteristics, nutritional status and body composition. ETHICS AND DISSEMINATION: The study was approved by an independent institutional review board on June 2023 (Comité de protection des personnes Sud-Méditerranée V; 2023-A00582-43) and declared to the French regulatory authority for research. Written informed consent will be obtained prior to patient inclusion. The principal investigator will be notified of any changes in patient's health status requiring a modification of his management and/or treatment during the course of the protocol. Results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov, NCT05954117.
Assuntos
Adenocarcinoma , Tecido Adiposo , Caquexia , Neoplasias Esofágicas , Junção Esofagogástrica , Mitocôndrias , Humanos , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/patologia , Estudos Prospectivos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Tecido Adiposo/metabolismo , Estudos Observacionais como Assunto , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/complicações , Masculino , Antineoplásicos , FemininoRESUMO
As ¾ of the global population either have excess or insufficient fat, it has become increasingly critical to understand the functions and dysfunctions of adipose tissue (AT). AT serves as a key organ in energy metabolism, and recently, attention has been focused on white AT, particularly its mitochondria, as the literature evidence links their functions to adiposity. This narrative review provides an overview of mitochondrial functionality in human white AT. Firstly, it is noteworthy that the two primary AT depots, subcutaneous AT (scAT) and visceral AT (vAT), exhibit differences in mitochondrial density and activity. Notably, vAT tends to have a higher mitochondrial activity compared to scAT. Subsequently, studies have unveiled a negative correlation between mitochondrial activity and body mass index (BMI), indicating that obesity is associated with a lower mitochondrial function. While the impact of exercise on AT mitochondria remains uncertain, dietary interventions have demonstrated varying effects on AT mitochondria. This variability holds promise for the modulation of AT mitochondrial activity. In summary, AT mitochondria exert a significant influence on health outcomes and can be influenced by factors such as obesity and dietary interventions. Understanding the mechanisms underlying these responses can offer potential insights into managing conditions related to AT and overall health.
Assuntos
Adiposidade , Obesidade , Humanos , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Gordura Intra-Abdominal/metabolismo , Mitocôndrias/metabolismoRESUMO
We aimed to assess if casein structure affects its digestion and its subsequent amino acid delivery kinetic. Higher nitrogen levels were recovered in dialysates after in vitro digestions of sodium caseinate (SC, formed of small aggregates) compared to micellar casein (MC, native form of casein) and calcium caseinate (CC, intermediate structure). Likewise, plasma indispensable amino-acid concentration peak was higher after SC compared to MC or CC ingestion in healthy volunteers in a randomized, double blind, cross-over study. In pigs, gamma-scintigraphy using labelled meals revealed that SC was mainly localized in the proximal part of the stomach whereas MC was distributed in the whole gastric cavity. Caseins were found in both solid and liquid phases and partly hydrolyzed casein in the solid phase shortly after SC drink ingestion. These data support the concept of slow (MC) and rapid (SC) casein depending of casein structure, likely due to their intra-gastric clotting properties.
Assuntos
Aminoácidos , Caseínas , Estudos Cross-Over , Digestão , Animais , Caseínas/química , Caseínas/metabolismo , Estômago/metabolismo , Suínos , Humanos , Voluntários SaudáveisRESUMO
BACKGROUND: There are several mechanisms via which increased protein intake might maintain or improve bone mineral density (BMD), but current evidence for an association or effect is inconclusive. The objectives of this study were to investigate the association between dietary protein intake (total, plant and animal) with BMD (spine and total body) and the effects of protein supplementation on BMD. METHODS: Individual data from four trials that included either (pre-)frail, undernourished or healthy older adults (aged ≥65 years) were combined. Dietary intake was assessed with food records (2, 3 or 7 days) and BMD with dual-energy X-ray absorptiometry (DXA). Associations and effects were assessed by adjusted linear mixed models. RESULTS: A total of 1570 participants [57% women, median (inter-quartile range): age 71 (68-75) years] for which at least total protein intake and total body BMD were known were included in cross-sectional analyses. In fully adjusted models, total protein intake was associated with higher total body and spine BMD [beta (95% confidence interval): 0.0011 (0.0006-0.0015) and 0.0015 (0.0007-0.0023) g/cm2 , respectively]. Animal protein intake was associated with higher total body and spine BMD as well [0.0011 (0.0007-0.0016) and 0.0017 (0.0010-0.0024) g/cm2 , respectively]. Plant protein intake was associated with a lower total body and spine BMD [-0.0010 (-0.0020 to -0.0001) and -0.0019 (-0.0034 to -0.0004) g/cm2 , respectively]. Associations were similar between sexes. Participants with a high ratio of animal to plant protein intake had higher BMD. In participants with an adequate calcium intake and sufficient serum 25(OH)D concentrations, the association between total protein intake with total body and spine BMD became stronger. Likewise, the association between animal protein intake with total body BMD was stronger. In the longitudinal analyses, 340 participants [58% women, median (inter-quartile range): age 75 (70-81) years] were included. Interventions of 12 or 24 weeks with protein supplementation or protein supplementation combined with resistance exercise did not lead to significant improvements in BMD. CONCLUSIONS: An association between total and animal protein intake with higher BMD was found. In contrast, plant protein intake was associated with lower BMD. Research is warranted to further investigate the added value of dietary protein alongside calcium and vitamin D for BMD improvement, especially in osteopenic or osteoporotic individuals. Moreover, more research on the impact of a plant-based diet on bone health is needed.
Assuntos
Densidade Óssea , Proteínas Alimentares , Animais , Feminino , Masculino , Proteínas Alimentares/farmacologia , Cálcio , Absorciometria de Fóton , Proteínas de Plantas/farmacologiaRESUMO
Over the past decades, a growing interest in eccentric (ECC) exercise has emerged, but mitochondrial adaptations to ECC training remain poorly documented. Using an approach for manipulating mechanical and metabolic exercise power, we positioned that for the same metabolic power, training using concentric (CON) or ECC contractions would induce similar skeletal muscle mitochondrial adaptations. Sixty adult rats were randomly assigned to a control (CTRL) or three treadmill training groups running at 15 m·min-1 for 45 min, 5 days weekly for 8 wk at targeted upward or downward slopes. Animals from the CON (+15%) and ECC30 (-30%) groups were trained at iso-metabolic power, whereas CON and ECC15 (-15%) exercised at iso-mechanical power. Assessments were made of vastus intermedius mitochondrial respiration (oxygraphy), enzymatic activities (spectrophotometry), and real-time qPCR for mRNA transcripts. Maximal rates of mitochondrial respiration were 14%-15% higher in CON and ECC30 compared with CTRL and ECC15. Apparent Km for ADP for trained groups was 40%-66% higher than CTRL, with statistical significance reached for CON and ECC30. Complex I and citrate synthase activities were 1.6 (ECC15) to 1.8 (ECC30 and CON) times values of CTRL. Complex IV activity was higher than CTRL (P < 0.05) only for CON and ECC30. mRNA transcripts analyses showed higher TFAM, SLC25A4, CKMT2, and PPID in the ECC30 compared with CTRL. Findings confirm that training-induced skeletal muscle mitochondrial function adaptations are governed by the extent of metabolic overload irrespective of exercise modality. The distinctive ECC30 mRNA transcript pattern may reflect a cytoskeleton damage-repair or ECC adaptive cycle that differs from that of biogenesis.NEW & NOTEWORTHY Anticipating outcomes of eccentric versus concentric training is confounded by differences in mechanical efficiency. Our observations in groups of rats submitted to uphill and downhill running regimens inducing similar levels of metabolic demands or same external power outputs reaffirm that independent of modality, oxygen requirements and not external work governs skeletal muscle mitochondrial function adaptations.
Assuntos
Músculo Esquelético , Corrida , Animais , Masculino , Mitocôndrias , Músculo Esquelético/fisiologia , Músculo Quadríceps/metabolismo , RNA Mensageiro/metabolismo , Ratos , Corrida/fisiologiaRESUMO
The availability of omics data providing information from different layers of complex biological processes that link nutrition to human health would benefit from the development of integrated approaches combining holistically individual omics data, including those associated with the microbiota that impacts the metabolisation and bioavailability of food components. Microbiota must be considered as a set of populations of interconnected consortia, with compensatory capacities to adapt to different nutritional intake. To study the consortium nature of the microbiome, we must rely on specially designed data analysis tools. The purpose of this work is to propose the construction of a general correlation network-based explorative tool, suitable for nutritional clinical trials, by integrating omics data from faecal microbial taxa, stool metabolome (1H NMR spectra) and GC-MS for stool volatilome. The presented approach exploits a descriptive paradigm necessary for a true multiomics integration of data, which is a powerful tool to investigate the complex physiological effects of nutritional interventions.
RESUMO
The various positional isomers of oleic acid (18 : 1Δ9c or 9c-18 : 1) may have distinct biological effects. Detrimental effects of consumption of industrial trans-fatty acids (TFA) (elaidic acid; 18 : 1Δ9t) from partially hydrogenated vegetable oils on CVD risk factors are well documented. In addition, epidemiological data suggest that chronic consumption of industrial sources of TFA could alter insulin sensitivity and predispose for type 2 diabetes. However, intervention studies on this issue have remained inconclusive. Moreover, very little information is available on the effect of natural sources of TFA (vaccenic acid; 18 : 1Δ11t) coming from dairy products and ruminant meat on the development of CVD and type 2 diabetes. The review focuses on the impact of the consumption of ruminant TFA in relation to cardiovascular risk factors, inflammation and type 2 diabetes.
Assuntos
Doenças Cardiovasculares/etiologia , Laticínios/efeitos adversos , Diabetes Mellitus Tipo 2/etiologia , Gorduras na Dieta/efeitos adversos , Carne/efeitos adversos , Ácidos Graxos trans/efeitos adversos , Animais , Humanos , Inflamação/etiologia , RuminantesRESUMO
Although lifestyle-based interventions are the most effective to prevent metabolic syndrome (MetS), there is no definitive agreement on which nutritional approach is the best. The aim of the present retrospective analysis was to identify a multivariate model linking energy and macronutrient intake to the clinical features of MetS. Volunteers at risk of MetS (F = 77, M = 80) were recruited in four European centres and finally eligible for analysis. For each subject, the daily energy and nutrient intake was estimated using the EPIC questionnaire and a 24-h dietary recall, and it was compared with the dietary reference values. Then we built a predictive model for a set of clinical outcomes computing shifts from recommended intake thresholds. The use of the ridge regression, which optimises prediction performances while retaining information about the role of all the nutritional variables, allowed us to assess if a clinical outcome was manly dependent on a single nutritional variable, or if its prediction was characterised by more complex interactions between the variables. The model appeared suitable for shedding light on the complexity of nutritional variables, which effects could be not evident with univariate analysis and must be considered in the framework of the reciprocal influence of the other variables.
Assuntos
Ingestão de Energia , Síndrome Metabólica/epidemiologia , Modelos Biológicos , Nutrientes/metabolismo , Voluntários , Feminino , Humanos , Masculino , Fatores de Risco , Estatísticas não Paramétricas , Resultado do TratamentoRESUMO
BACKGROUNDHigh circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown.METHODSIn a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake.RESULTSMilk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut.CONCLUSIONMilk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL.TRIAL REGISTRATIONClinicalTrials.gov, NCT02099032, NCT02146339.FUNDINGANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).
Assuntos
Ceramidas , Metabolismo dos Lipídeos/fisiologia , Leite , Pós-Menopausa/metabolismo , Esfingomielinas , Animais , Ceramidas/análise , Ceramidas/sangue , Ceramidas/metabolismo , Queijo , Dieta , Fezes/química , Feminino , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Sobrepeso , Esfingomielinas/análise , Esfingomielinas/sangue , Esfingomielinas/metabolismoRESUMO
BACKGROUND: Maintenance of high physical performance during aging might be supported by an adequate dietary intake of niacin, vitamins B-6 and B-12, and folate because these B vitamins are involved in multiple processes related to muscle functioning. However, not much is known about the association between dietary intake of these B vitamins and physical performance. OBJECTIVES: The objectives of this study were to investigate the association between dietary intake of niacin, vitamins B-6 and B-12, and folate and physical performance in older adults and to explore mediation by niacin status and homocysteine concentrations. METHODS: We used baseline data from the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) trial, which included n = 1249 healthy older adults (aged 65-79 y) with complete data on dietary intake measured with 7-d food records and questionnaires on vitamin supplement use and physical performance measured with the short physical performance battery and handgrip dynamometry. Associations were assessed by adjusted linear mixed models. RESULTS: Intake of vitamin B-6 was related to lower chair rise test time [ß: -0.033 ± 0.016 s (log); P = 0.043]. Vitamin B-6 intake was also significantly associated with handgrip strength, but for this association, a significant interaction effect between vitamin B-6 intake and physical activity level was found. In participants with the lowest level of physical activity, higher intake of vitamin B-6 tended to be associated with greater handgrip strength (ß: 1.5 ± 0.8 kg; P = 0.051), whereas in participants in the highest quartile of physical activity, higher intake was associated with lower handgrip strength (ß: -1.4 ± 0.7 kg; P = 0.041). No evidence was found for an association between intake of niacin, vitamin B-12, or folate and physical performance or for mediation by niacin status or homocysteine concentrations. CONCLUSIONS: Vitamin B-6 intake was associated with better chair rise test time in a population of European healthy older adults and also with greater handgrip strength in participants with low physical activity only. Homocysteine concentrations did not mediate these associations. The NU-AGE trial was registered at clinicaltrials.gov as NCT01754012.
Assuntos
Envelhecimento/fisiologia , Dieta/normas , Desempenho Físico Funcional , Vitamina B 6/administração & dosagem , Idoso , Suplementos Nutricionais , Europa (Continente) , Exercício Físico , Feminino , Força da Mão , Envelhecimento Saudável , Homocisteína/sangue , Humanos , Masculino , Estado NutricionalRESUMO
BACKGROUND & AIMS: Metabolic syndrome (MetS) induces major disturbances in plasma metabolome, reflecting abnormalities of several metabolic pathways. Recent evidences have demonstrated that the consumption of dairy products may protect from MetS, but the mechanisms remains unknown. The present study aimed at identify how the consumption of different types of dairy products could modify the changes in plasma metabolome during MetS. METHODS: In this observational study, we analyzed how the consumption of dairy products could modify the perturbations in the plasma metabolome induced by MetS in a sample of 298 participants (61 with MetS) from the French MONA LISA survey. Metabolomic profiling was analyzed with UPLC-MS/MS. RESULTS: Subjects with MetS exhibited major changes in plasma metabolome. Significant differences in plasma levels of branched chain amino acids, gamma-glutamyl amino acids, and metabolites from arginine and proline metabolism were observed between healthy control and Mets subjects. Plasma levels of many lipid species were increased with MetS (mono- and diacylglycerols, eicosanoids, lysophospholipids and lysoplasmalogens), with corresponding decreases in short chain fatty acids and plasmalogens. The consumption of dairy products, notably with a low fat content (milk and fresh dairy products), altered metabolite profiles in plasma from MetS subjects. Specifically, increasing consumption of dairy products promoted accumulation of plasma C15:0 fatty acid and was inversely associated to some circulating lysophospholipids, sphingolipids, gamma-glutamyl amino acids, leukotriene B4 and lysoplasmalogens. CONCLUSIONS: the consumption of low fat dairy products could mitigate some of the variations induced by MetS.
Assuntos
Laticínios/efeitos adversos , Dieta/efeitos adversos , Síndrome Metabólica/induzido quimicamente , Metabolômica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
The potential influence of magnesium (Mg) on inflammatory responses was assessed using an ex vivo model--human whole blood incubated with and without lipopolysaccharide (LPS). Addition of LPS leads to higher levels of cytokines including TNF-alpha and IL-6. No significant effect of Mg was observed following LPS stimulation whereas high concentration of Mg inhibited the baseline level (without LPS) of TNF-alpha and IL-6 production. This observation contrasts with that of a previous one on Mg-deficient animals. Therefore, the weak efficiency of increasing Mg concentration in this study on the whole blood from healthy volunteers suggests that the efficiency of Mg supplementation on cytokine production induced by endotoxin challenge depends on Mg status.
Assuntos
Sangue/metabolismo , Citocinas/metabolismo , Magnésio/metabolismo , Feminino , Humanos , Inflamação , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Magnésio/química , Sulfato de Magnésio/química , Masculino , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Docosahexaenoic acid (DHA) has been reported to have a positive impact on many diet-related disease risks, including metabolic syndrome. Although many DHA-enriched foods have been marketed, the impact of different food matrices on the effect of DHA is unknown. As well, the possibility to enhance DHA effectiveness through the co-administration of other bioactives has seldom been considered. We evaluated DHA effects on the serum metabolome administered to volunteers at risk of metabolic syndrome as an ingredient of three different foods. Foods were enriched with DHA alone or in combination with oat beta-glucan or anthocyanins and were administered to volunteers for 4 weeks. Serum samples collected at the beginning and end of the trial were analysed by NMR-based metabolomics. Multivariate and univariate statistical analyses were used to characterize modifications in the serum metabolome and to evaluate bioactive-bioactive and bioactive-food matrix interactions. DHA administration induces metabolome perturbation that is influenced by the food matrix and the co-presence of other bioactives. In particular, when co-administered with oat beta-glucan, DHA induces a strong rearrangement in the lipoprotein profile of the subjects. The observed modifications are consistent with clinical results and indicate that metabolomics represents a possible strategy to choose the most appropriate food matrices for bioactive enrichment.
Assuntos
Antocianinas/administração & dosagem , Dieta , Ácidos Docosa-Hexaenoicos/administração & dosagem , Metaboloma/efeitos dos fármacos , beta-Glucanas/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Suplementos Nutricionais , Feminino , Alimentos Fortificados , Humanos , Lipoproteínas , Espectroscopia de Ressonância Magnética , Masculino , Síndrome Metabólica/epidemiologia , Metabolômica/métodos , Pessoa de Meia-Idade , Fatores de RiscoRESUMO
PURPOSE: To compare the effects of 8-wk eccentric (ECC) versus concentric (CON) training using downhill and uphill running in rats on whole body composition, bone mineral density (BMD), and energy expenditure. METHODS: Animals were randomly assigned to one of the following groups: 1) control (CTRL), 2) +15% uphill-running slope (CON), 3) -15% downhill-running slope (ECC15), and 4) -30% downhill-running slope (ECC30). Those programs enabled to achieve conditions of isopower output for CON and ECC15 and of iso-oxygen uptake (VËO2) for CON and ECC30. Trained rats ran 45 min at 15 m·min five times per week. Total body mass, fat body mass, and lean body mass (LBM) measured through EchoMRI™, and 24-h energy expenditure including basal metabolic rate (BMR) assessed using PhenoMaster/LabMaster™ cage system were obtained before and after training. At sacrifice, the right femur was collected for bone parameters analysis. RESULTS: Although total body mass increased in all groups over the 8-wk period, almost no change occurred for fat body mass in exercised groups (CON, -4.8 ± 6.18 g; ECC15, 0.6 ± 3.32 g; ECC30, 2.6 ± 6.01 g). The gain in LBM was mainly seen for ECC15 (88.9 ± 6.85 g) and ECC30 (101.6 ± 11.07 g). ECC was also seen to positively affect BMD. An increase in BMR from baseline was seen in exercise groups (CON, 13.9 ± 4.13 kJ·d; ECC15, 11.6 ± 5.10 kJ·d; ECC30, 18.3 ± 4.33 kJ·d) but not in CTRL one. This difference disappeared when BMR was normalized for LBM. CONCLUSIONS: Results indicate that for iso-VËO2 training, the impact on LBM and BMD is enhanced with ECC as compared with CON, and that for isopower but lower VËO2 ECC, an important stimulus for adaptation is still observed. This provides further insights for the use of ECC in populations with cardiorespiratory exercise limitations.
Assuntos
Composição Corporal/fisiologia , Densidade Óssea/fisiologia , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/métodos , Corrida/fisiologia , Animais , Índice de Massa Corporal , Humanos , Masculino , Modelos Animais , Proteínas Musculares/metabolismo , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Distribuição Aleatória , Ratos WistarRESUMO
Around a quarter of the global adult population have metabolic syndrome (MetS) and therefore increased risk of cardiovascular mortality and diabetes. Docosahexaenoic acid, oat beta-glucan and grape anthocyanins have been shown to be effective in reducing MetS risk factors when administered as isolated compounds, but their effect when administered as bioactive-enriched foods has not been evaluated. OBJECTIVE: The overall aim of the PATHWAY-27 project was to evaluate the effectiveness of bioactive-enriched food consumption on improving risk factors of MetS. A pilot study was conducted to assess which of five bioactive combinations provided within three different food matrices (bakery, dairy or egg) were the most effective in adult volunteers. The trial also evaluated the feasibility of production, consumer acceptability and gastrointestinal tolerance of the bioactive-enriched food. METHOD: The study included three monocentric, parallel-arm, double-blind, randomised, dietary intervention trials without a placebo. Each recruiting centre tested the five bioactive combinations within a single food matrix. RESULTS: The study was completed by 167 participants (74 male, 93 female). The results indicated that specific bioactive/matrix combinations have effects on serum triglyceride or HDL-cholesterol level without adverse effects. CONCLUSION: The study evidenced that bioactive-enriched food offers a promising food-based strategy for MetS prevention, and highlighted the importance of conducting pilot studies.
Assuntos
Dieta , Alimentos Fortificados , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/prevenção & controle , Adulto , Idoso , Método Duplo-Cego , Ácidos Graxos/sangue , Ácidos Graxos/classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos PilotoRESUMO
We aimed to determine the effect of a Mediterranean-style diet, tailored to meet dietary recommendations for older adults, on blood pressure and arterial stiffness. In 12 months, randomized controlled trial (NU-AGE [New Dietary Strategies Addressing the Specific Needs of Elderly Population for Healthy Aging in Europe]), blood pressure was measured in 1294 healthy participants, aged 65 to 79 years, recruited from 5 European centers, and arterial stiffness in a subset of 225 participants. The intervention group received individually tailored standardized dietary advice and commercially available foods to increase adherence to a Mediterranean diet. The control group continued on their habitual diet and was provided with current national dietary guidance. In the 1142 participants who completed the trial (88.2%), after 1 year the intervention resulted in a significant reduction in systolic blood pressure (-5.5 mm Hg; 95% CI, -10.7 to -0.4; P=0.03), which was evident in males (-9.2 mm Hg, P=0.02) but not females (-3.1 mm Hg, P=0.37). The -1.7 mm Hg (95% CI, -4.3 to 0.9) decrease in diastolic pressure after intervention did not reach statistical significance. In a subset (n=225), augmentation index, a measure of arterial stiffness, was improved following intervention (-12.4; 95% CI, -24.4 to -0.5; P=0.04) with no change in pulse wave velocity. The intervention also resulted in an increase in 24-hour urinary potassium (8.8 mmol/L; 95% CI, 0.7-16.9; P=0.03) and in male participants (52%) a reduction in pulse pressure (-6.1 mm Hg; 95% CI, -12.0 to -0.2; P=0.04) and 24-hour urinary sodium (-27.1 mmol/L; 95% CI, -53.3 to -1.0; P=0.04). In conclusion, a Mediterranean-style diet is effective in improving cardiovascular health with clinically relevant reductions in blood pressure and arterial stiffness. Clinical Trial Registration- URL: http://www.clinicialtrials.gov . Unique identifier: NCT01754012.