Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897019

RESUMO

MOTIVATION: The amount of genomic data is increasing exponentially. Using many genotyped and phenotyped individuals for genomic prediction is appealing yet challenging. RESULTS: We present SLEMM (short for Stochastic-Lanczos-Expedited Mixed Models), a new software tool, to address the computational challenge. SLEMM builds on an efficient implementation of the stochastic Lanczos algorithm for REML in a framework of mixed models. We further implement SNP weighting in SLEMM to improve its predictions. Extensive analyses on seven public datasets, covering 19 polygenic traits in three plant and three livestock species, showed that SLEMM with SNP weighting had overall the best predictive ability among a variety of genomic prediction methods including GCTA's empirical BLUP, BayesR, KAML, and LDAK's BOLT and BayesR models. We also compared the methods using nine dairy traits of ∼300k genotyped cows. All had overall similar prediction accuracies, except that KAML failed to process the data. Additional simulation analyses on up to 3 million individuals and 1 million SNPs showed that SLEMM was advantageous over counterparts as for computational performance. Overall, SLEMM can do million-scale genomic predictions with an accuracy comparable to BayesR. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/jiang18/slemm.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Feminino , Animais , Bovinos , Teorema de Bayes , Genômica/métodos , Genótipo , Fenótipo , Modelos Genéticos
2.
Genet Sel Evol ; 56(1): 8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243193

RESUMO

BACKGROUND: Improving pigs' ability to digest diets with an increased dietary fiber content is a lever to improve feed efficiency and limit feed costs in pig production. The aim of this study was to determine whether information on the gut microbiota and host genetics can contribute to predict digestive efficiency (DE, i.e. digestibility coefficients of energy, organic matter, and nitrogen), feed efficiency (FE, i.e. feed conversion ratio and residual feed intake), average daily gain, and daily feed intake phenotypes. Data were available for 1082 pigs fed a conventional or high-fiber diet. Fecal samples were collected at 16 weeks, and DE was estimated using near­infrared spectrometry. A cross-validation approach was used to predict traits within the same diet, for the opposite diet, and for a combination of both diets, by implementing three models, i.e. with only genomic (Gen), only microbiota (Micro), and both genomic and microbiota information (Micro+Gen). The predictive ability with and without sharing common sires and breeding environment was also evaluated. Prediction accuracy of the phenotypes was calculated as the correlation between model prediction and phenotype adjusted for fixed effects. RESULTS: Prediction accuracies of the three models were low to moderate (< 0.47) for growth and FE traits and not significantly different between models. In contrast, for DE traits, prediction accuracies of model Gen were low (< 0.30) and those of models Micro and Micro+Gen were moderate to high (> 0.52). Prediction accuracies were not affected by the stratification of diets in the reference and validation sets and were in the same order of magnitude within the same diet, for the opposite diet, and for the combination of both diets. Prediction accuracies of the three models were significantly higher when pigs in the reference and validation populations shared common sires and breeding environment than when they did not (P < 0.001). CONCLUSIONS: The microbiota is a relevant source of information to predict DE regardless of the diet, but not to predict growth and FE traits for which prediction accuracies were similar to those obtained with genomic information only. Further analyses on larger datasets and more diverse diets should be carried out to complement and consolidate these results.


Assuntos
Dieta , Microbiota , Animais , Suínos , Dieta/veterinária , Ingestão de Alimentos/genética , Fenótipo , Genoma , Ração Animal/análise
3.
Genet Sel Evol ; 56(1): 44, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858613

RESUMO

BACKGROUND: Longitudinal records of automatically-recorded vaginal temperature (TV) could be a key source of data for deriving novel indicators of climatic resilience (CR) for breeding more resilient pigs, especially during lactation when sows are at an increased risk of suffering from heat stress (HS). Therefore, we derived 15 CR indicators based on the variability in TV in lactating sows and estimated their genetic parameters. We also investigated their genetic relationship with sows' key reproductive traits. RESULTS: The heritability estimates of the CR traits ranged from 0.000 ± 0.000 for slope for decreased rate of TV (SlopeDe) to 0.291 ± 0.047 for sum of TV values below the HS threshold (HSUB). Moderate to high genetic correlations (from 0.508 ± 0.056 to 0.998 ± 0.137) and Spearman rank correlations (from 0.431 to 1.000) between genomic estimated breeding values (GEBV) were observed for five CR indicators, i.e. HS duration (HSD), the normalized median multiplied by normalized variance (Nor_medvar), the highest TV value of each measurement day for each individual (MaxTv), and the sum of the TV values above (HSUA) and below (HSUB) the HS threshold. These five CR indicators were lowly to moderately genetically correlated with shoulder skin surface temperature (from 0.139 ± 0.008 to 0.478 ± 0.048) and respiration rate (from 0.079 ± 0.011 to 0.502 ± 0.098). The genetic correlations between these five selected CR indicators and sow reproductive performance traits ranged from - 0.733 to - 0.175 for total number of piglets born alive, from - 0.733 to - 0.175 for total number of piglets born, and from - 0.434 to - 0.169 for number of pigs weaned. The individuals with the highest GEBV (most climate-sensitive) had higher mean skin surface temperature, respiration rate (RR), panting score (PS), and hair density, but had lower mean body condition scores compared to those with the lowest GEBV (most climate-resilient). CONCLUSIONS: Most of the CR indicators evaluated are heritable with substantial additive genetic variance. Five of them, i.e. HSD, MaxTv, HSUA, HSUB, and Nor_medvar share similar underlying genetic mechanisms. In addition, individuals with higher CR indicators are more likely to exhibit better HS-related physiological responses, higher body condition scores, and improved reproductive performance under hot conditions. These findings highlight the potential benefits of genetically selecting more heat-tolerant individuals based on CR indicators.


Assuntos
Resposta ao Choque Térmico , Lactação , Animais , Feminino , Lactação/genética , Suínos/genética , Suínos/fisiologia , Resposta ao Choque Térmico/genética , Vagina , Temperatura Corporal , Clima , Cruzamento/métodos , Característica Quantitativa Herdável
4.
J Dairy Sci ; 107(1): 398-411, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641298

RESUMO

This study aimed at evaluating the quality of imputation accuracy (IA) by marker (IAm) and by individual (IAi) in US crossbred dairy cattle. Holstein × Jersey crossbreds were used to evaluate IA from a low- (7K) to a medium-density (50K) SNP chip. Crossbred animals, as well as their sires (53), dams (77), and maternal grandsires (63), were all genotyped with a 78K SNP chip. Seven different scenarios of reference populations were tested, in which some scenarios used different family relationships and others added random unrelated purebred and crossbred individuals to those different family relationship scenarios. The same scenarios were tested on Holstein and Jersey purebred animals to compare these outcomes against those attained in crossbred animals. The genotype imputation was performed with findhap (version 4) software (VanRaden, 2015). There were no significant differences in IA results depending on whether the sire of imputed individuals was Holstein and the dam was Jersey, or vice versa. The IA increased significantly with the addition of related individuals in the reference population, from 86.70 ± 0.06% when only sires or dams were included in the reference population to 90.09 ± 0.06% when sire (S), dam (D), and maternal grandsire genomic data were combined in the reference population. In all scenarios including related individuals in the reference population, IAm and IAi were significantly superior in purebred Jersey and Holstein animals than in crossbreds, ranging from 90.75 ± 0.06 to 94.02 ± 0.06%, and from 90.88 ± 0.11 to 94.04 ± 0.10%, respectively. Additionally, a scenario called SPB+DLD(where PB indicates purebread and LD indicates low density), similar to the genomic evaluations performed on US crossbred dairy, was tested. In this scenario, the information from the 5 evaluated breeds (Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey) genotyped with a 50K SNP chip and genomic information from the dams genotyped with a 7K SNP chip were combined in the reference population, and the IAm and IAi were 80.87 ± 0.06% and 80.85 ± 0.08%, respectively. Adding randomly nonrelated genotyped individuals in the reference population reduced IA for both purebred and crossbred cows, except for scenario SPB+DLD, where adding crossbreds to the reference population increased IA values. Our findings demonstrate that IA for US Holstein × Jersey crossbred ranged from 85 to 90%, and emphasize the significance of designing and defining the reference population for improved IA.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Bovinos/genética , Animais , Genótipo , Genômica/métodos , Hibridização Genética
5.
J Dairy Sci ; 107(5): 3032-3046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38056567

RESUMO

This study leveraged a growing dataset of producer-recorded phenotypes for mastitis, reproductive diseases (metritis and retained placenta), and metabolic diseases (ketosis, milk fever, and displaced abomasum) to investigate the potential presence of inbreeding depression for these disease traits. Phenotypic, pedigree, and genomic information were obtained for 354,043 and 68,292 US Holstein and Jersey cows, respectively. Total inbreeding coefficients were calculated using both pedigree and genomic information; the latter included inbreeding estimates obtained using a genomic relationship matrix and runs of homozygosity. We also generated inbreeding coefficients based on the generational inbreeding for recent and old pedigree inbreeding, for different run-of-homozygosity length classes, and for recent and old homozygous-by-descent segment-based inbreeding. Estimates on the liability scale revealed significant evidence of inbreeding depression for reproductive-disease traits, with an increase in total pedigree and genomic inbreeding showing a notable effect for recent inbreeding. However, we found inconsistent evidence for inbreeding depression for mastitis or any metabolic diseases. Notably, in Holsteins, the probability of developing displaced abomasum decreased with inbreeding, particularly for older inbreeding. Estimates of disease probability for cows with low, average, and high inbreeding levels did not significantly differ across any inbreeding coefficient and trait combination, indicating that although inbreeding may affect disease incidence, it likely plays a smaller role compared with management and environmental factors.

6.
J Anim Breed Genet ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985010

RESUMO

Traits such as meat quality and composition are becoming valuable in modern pork production; however, they are difficult to include in genetic evaluations because of the high phenotyping costs. Combining genomic information with multiple-trait indirect selection with cheaper indicator traits is an alternative for continued cost-effective genetic improvement. Additionally, gut microbiome information is becoming more affordable to measure using targeted rRNA sequencing, and its applications in animal breeding are becoming relevant. In this paper, we investigated the usefulness of microbial information as a correlated trait in selecting meat quality in swine. This study incorporated phenotypic data encompassing marbling, colour, tenderness, loin muscle and backfat depth, along with the characterization of gut (rectal) microbiota through 16S rRNA sequencing at three distinct time points of the animal's growth curve. Genetic progress estimation and cross-validation were employed to evaluate the utility of utilizing host genomic and gut microbiota information for selecting expensive-to-record traits in crossbred individuals. Initial steps involved variance components estimation using multiple-trait models on a training dataset, where the top 25 associated operational taxonomic units (OTU) for each meat quality trait and time point were included. The second step compared the predictive ability of multiple-trait models incorporating different numbers of OTU with single-trait models in a validation set. Results demonstrated the advantage of including genomic information for some traits, while in some instances, gut microbial information proved advantageous, namely, for marbling and pH. The study suggests further investigation into the shared genetic architecture between microbial features and traits, considering microbial data's compositional and high-dimensional nature. This research proposes a straightforward method to enhance swine breeding programs for improving costly-to-record traits like meat quality by incorporating gut microbiome information.

7.
J Nutr ; 153(8): 2249-2262, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348760

RESUMO

BACKGROUND: Early intestinal development is important to infant vitality, and optimal formula composition can promote gut health. OBJECTIVES: The objectives were to evaluate the effects of arachidonate (ARA) and/or prebiotic oligosaccharide (PRE) supplementation in formula on the development of the microbial ecosystem and colonic health parameters. METHODS: Newborn piglets were fed 4 formulas containing ARA [0.5 compared with 2.5% of dietary fatty acids (FAs)] and PRE (0 compared with 8 g/L, containing a 1:1 mixture of galactooligosaccharides and polydextrose) in a 2 x 2 factorial design for 22 d. Fecal samples were collected weekly and analyzed for relative microbial abundance. Intestinal samples were collected on day 22 and analyzed for mucosal FAs, pH, and short-chain FAs (SCFAs). RESULTS: PRE supplementation significantly increased genera within Bacteroidetes and Firmicutes, including Anaerostipes, Mitsuokella, Prevotella, Clostridium IV, and Bulleidia, and resulted in progressive separation from controls as determined by Principal Coordinates Analysis. Concentrations of SCFA increased from 70.98 to 87.37 mM, with an accompanying reduction in colonic pH. ARA supplementation increased the ARA content of the colonic mucosa from 2.35-5.34% of total FAs. PRE supplementation also altered mucosal FA composition, resulting in increased linoleic acid (11.52-16.33% of total FAs) and ARA (2.35-5.16% of total FAs). CONCLUSIONS: Prebiotic supplementation during the first 22 d of life altered the gut microbiota of piglets and increased the abundance of specific bacterial genera. These changes correlated with increased SCFA, which may benefit intestinal development. Although dietary ARA did not alter the microbiota, it increased the ARA content of the colonic mucosa, which may support intestinal development and epithelial repair. Prebiotic supplementation also increased unsaturation of FAs in the colonic mucosa. Although the mechanism requires further investigation, it may be related to altered microbial ecology or biohydrogenation of FA.


Assuntos
Microbiota , Prebióticos , Animais , Suínos , Oligossacarídeos/farmacologia , Oligossacarídeos/análise , Fezes/microbiologia , Mucosa Intestinal , Lipídeos
8.
J Evol Biol ; 36(12): 1695-1711, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37885134

RESUMO

Animal ecology and evolution have long been known to shape host physiology, but more recently, the gut microbiome has been identified as a mediator between animal ecology and evolution and health. The gut microbiome has been shown to differ between wild and domestic animals, but the role of these differences for domestic animal evolution remains unknown. Gut microbiome responses to new animal genotypes and local environmental change during domestication may promote specific host phenotypes that are adaptive (or not) to the domestic environment. Because the gut microbiome supports host immune function, understanding the effects of animal ecology and evolution on the gut microbiome and immune phenotypes is critical. We investigated how domestication affects the gut microbiome and host immune state in multiple pig populations across five domestication contexts representing domestication status and current living conditions: free-ranging wild, captive wild, free-ranging domestic, captive domestic in research or industrial settings. We observed that domestication context explained much of the variation in gut microbiome composition, pathogen abundances and immune markers, yet the main differences in the repertoire of metabolic genes found in the gut microbiome were between the wild and domestic genetic lineages. We also documented population-level effects within domestication contexts, demonstrating that fine scale environmental variation also shaped host and microbe features. Our findings highlight that understanding which gut microbiome and immune traits respond to host genetic lineage and/or scales of local ecology could inform targeted interventions that manipulate the gut microbiome to achieve beneficial health outcomes.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Microbioma Gastrointestinal/genética , Domesticação , Ecologia , Fenótipo , Genótipo
9.
Genet Sel Evol ; 55(1): 65, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730542

RESUMO

BACKGROUND: Genetic selection based on direct indicators of heat stress could capture additional mechanisms that are involved in heat stress response and enable more accurate selection for more heat-tolerant individuals. Therefore, the main objectives of this study were to estimate genetic parameters for various heat stress indicators in a commercial population of Landrace × Large White lactating sows measured under heat stress conditions. The main indicators evaluated were: skin surface temperatures (SST), automatically-recorded vaginal temperature (TV), respiration rate (RR), panting score (PS), body condition score (BCS), hair density (HD), body size (BS), ear size, and respiration efficiency (Reff). RESULTS: Traits based on TV presented moderate heritability estimates, ranging from 0.15 ± 0.02 to 0.29 ± 0.05. Low heritability estimates were found for SST traits (from 0.04 ± 0.01 to 0.06 ± 0.01), RR (0.06 ± 0.01), PS (0.05 0.01), and Reff (0.03 ± 0.01). Moderate to high heritability values were estimated for BCS (0.29 ± 0.04 for caliper measurements and 0.25 ± 0.04 for visual assessments), HD (0.25 ± 0.05), BS (0.33 ± 0.05), ear area (EA; 0.40 ± 0.09), and ear length (EL; 0.32 ± 0.07). High genetic correlations were estimated among SST traits (> 0.78) and among TV traits (> 0.75). Similarly, high genetic correlations were also estimated for RR with PS (0.87 ± 0.02), with BCS measures (0.92 ± 0.04), and with ear measures (0.95 ± 0.03). Low to moderate positive genetic correlations were estimated between SST and TV (from 0.25 ± 0.04 to 0.76 ± 0.07). Low genetic correlations were estimated between TV and BCS (from - 0.01 ± 0.08 to 0.06 ± 0.07). Respiration efficiency was estimated to be positively and moderately correlated with RR (0.36 ± 0.04), PS (0.56 ± 0.03), and BCS (0.56 ± 0.05 for caliper measurements and 0.50 ± 0.05 for the visual assessments). All other trait combinations were lowly genetically correlated. CONCLUSIONS: A comprehensive landscape of heritabilities and genetic correlations for various thermotolerance indicators in lactating sows were estimated. All traits evaluated are under genetic control and heritable, with different magnitudes, indicating that genetic progress is possible for all of them. The genetic correlation estimates provide evidence for the complex relationships between these traits and confirm the importance of a sub-index of thermotolerance traits to improve heat tolerance in pigs.


Assuntos
Transtornos de Estresse por Calor , Termotolerância , Humanos , Animais , Feminino , Suínos , Termotolerância/genética , Temperatura , Lactação/genética , Respiração , Resposta ao Choque Térmico/genética
10.
Genet Sel Evol ; 55(1): 95, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129768

RESUMO

BACKGROUND: Automatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV. RESULTS: Heritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, - 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ËšC). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370-59.998 Mb) and16 (21.548-21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production. CONCLUSIONS: TV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.


Assuntos
Lactação , Termotolerância , Suínos , Animais , Feminino , Lactação/genética , Temperatura , Genoma , Genômica
11.
BMC Microbiol ; 22(1): 1, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979903

RESUMO

BACKGROUND: The interplay between the gut microbiota and feeding behavior has consequences for host metabolism and health. The present study aimed to explore gut microbiota overall influence on feeding behavior traits and to identify specific microbes associated with the traits in three commercial swine breeds at three growth stages. Feeding behavior measures were obtained from 651 pigs of three breeds (Duroc, Landrace, and Large White) from an average 73 to 163 days of age. Seven feeding behavior traits covered the information of feed intake, feeder occupation time, feeding rate, and the number of visits to the feeder. Rectal swabs were collected from each pig at 73 ± 3, 123 ± 4, and 158 ± 4 days of age. DNA was extracted and subjected to 16 S rRNA gene sequencing. RESULTS: Differences in feeding behavior traits among breeds during each period were found. The proportion of phenotypic variances of feeding behavior explained by the gut microbial composition was small to moderate (ranged from 0.09 to 0.31). A total of 21, 10, and 35 amplicon sequence variants were found to be significantly (q-value < 0.05) associated with feeding behavior traits for Duroc, Landrace, and Large White across the three sampling time points. The identified amplicon sequence variants were annotated to five phyla, with Firmicutes being the most abundant. Those amplicon sequence variants were assigned to 28 genera, mainly including Christensenellaceae_R-7_group, Ruminococcaceae_UCG-004, Dorea, Ruminococcaceae_UCG-014, and Marvinbryantia. CONCLUSIONS: This study demonstrated the importance of the gut microbial composition in interacting with the host feeding behavior and identified multiple archaea and bacteria associated with feeding behavior measures in pigs from either Duroc, Landrace, or Large White breeds at three growth stages. Our study provides insight into the interaction between gut microbiota and feeding behavior and highlights the genetic background and age effects in swine microbial studies.


Assuntos
Comportamento Alimentar , Microbioma Gastrointestinal , Suínos/genética , Animais , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , Fenótipo , RNA Ribossômico 16S/genética , Suínos/crescimento & desenvolvimento , Suínos/microbiologia
12.
Genet Sel Evol ; 54(1): 42, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672700

RESUMO

BACKGROUND: Meat quality and composition traits have become valuable in modern pork production; however, genetic improvement has been slow due to high phenotyping costs. Combining genomic information with multi-trait indirect selection based on cheaper indicator traits is an alternative for continued cost-effective genetic improvement. METHODS: Data from an ongoing breeding program were used in this study. Phenotypic and genomic information was collected on three-way crossbred and purebred Duroc animals belonging to 28 half-sib families. We applied different methods to assess the value of using purebred and crossbred information (both genomic and phenotypic) to predict expensive-to-record traits measured on crossbred individuals. Estimation of multi-trait variance components set the basis for comparing the different scenarios, together with a fourfold cross-validation approach to validate the phenotyping schemes under four genotyping strategies. RESULTS: The benefit of including genomic information for multi-trait prediction depended on the breeding goal trait, the indicator traits included, and the source of genomic information. While some traits benefitted significantly from genotyping crossbreds (e.g., loin intramuscular fat content, backfat depth, and belly weight), multi-trait prediction was advantageous for some traits even in the absence of genomic information (e.g., loin muscle weight, subjective color, and subjective firmness). CONCLUSIONS: Our results show the value of using different sources of phenotypic and genomic information. For most of the traits studied, including crossbred genomic information was more beneficial than performing multi-trait prediction. Thus, we recommend including crossbred individuals in the reference population when these are phenotyped for the breeding objective.


Assuntos
Carne , Carne de Porco , Animais , Genoma , Genótipo , Fenótipo , Suínos/genética
13.
Genet Sel Evol ; 54(1): 55, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896976

RESUMO

BACKGROUND: Breeding pigs that can efficiently digest alternative diets with increased fiber content is a viable strategy to mitigate the feed cost in pig production. This study aimed at determining the contribution of the gut microbiota and host genetics to the phenotypic variability of digestive efficiency (DE) traits, such as digestibility coefficients of energy, organic matter and nitrogen, feed efficiency (FE) traits (feed conversion ratio and residual feed intake) and growth traits (average daily gain and daily feed intake). Data were available for 791 pigs fed a conventional diet and 735 of their full-sibs fed a high-fiber diet. Fecal samples were collected at 16 weeks of age to sequence the V3-V4 regions of the 16S ribosomal RNA gene and predict DE with near-infrared spectrometry. The proportions of phenotypic variance explained by the microbiota (microbiability) were estimated under three OTU filtering scenarios. Then, microbiability and heritability were estimated independently (models Micro and Gen) and jointly (model Micro+Gen) using a Bayesian approach for all traits. Breeding values were estimated in models Gen and Micro+Gen. RESULTS: Differences in microbiability estimates were significant between the two extreme filtering scenarios (14,366 and 803 OTU) within diets, but only for all DE. With the intermediate filtering scenario (2399 OTU) and for DE, microbiability was higher (> 0.44) than heritability (< 0.32) under both diets. For two of the DE traits, microbiability was significantly higher under the high-fiber diet (0.67 ± 0.06 and 0.68 ± 0.06) than under the conventional diet (0.44 ± 0.06). For growth and FE, heritability was higher (from 0.26 ± 0.06 to 0.44 ± 0.07) than microbiability (from 0.17 ± 0.05 to 0.35 ± 0.06). Microbiability and heritability estimates obtained with the Micro+Gen model did not significantly differ from those with the Micro and Gen models for all traits. Finally, based on their estimated breeding values, pigs ranked differently between the Gen and Micro+Gen models, only for the DE traits under both diets. CONCLUSIONS: The microbiota explained a significant proportion of the phenotypic variance of the DE traits, which was even larger than that explained by the host genetics. Thus, the use of microbiota information could improve the selection of DE traits, and to a lesser extent, of growth and FE traits. In addition, our results show that, at least for DE traits, filtering OTU is an important step and influences the microbiability.


Assuntos
Microbioma Gastrointestinal , Ração Animal/análise , Animais , Teorema de Bayes , Variação Biológica da População , Dieta/veterinária , Sus scrofa/genética , Suínos/genética
14.
J Dairy Sci ; 105(11): 8956-8971, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36153159

RESUMO

Maintaining a genetically diverse dairy cattle population is critical to preserving adaptability to future breeding goals and avoiding declines in fitness. This study characterized the genomic landscape of autozygosity and assessed trends in genetic diversity in 5 breeds of US dairy cattle. We analyzed a sizable genomic data set containing 4,173,679 pedigreed and genotyped animals of the Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey breeds. Runs of homozygosity (ROH) of 2 Mb or longer in length were identified in each animal. The within-breed means for number and the combined length of ROH were highest in Jerseys (62.66 ± 8.29 ROH and 426.24 ± 83.40 Mb, respectively; mean ± SD) and lowest in Ayrshires (37.24 ± 8.27 ROH and 265.05 ± 85.00 Mb, respectively). Short ROH were the most abundant, but moderate to large ROH made up the largest proportion of genome autozygosity in all breeds. In addition, we identified ROH islands in each breed. This revealed selection patterns for milk production, productive life, health, and reproduction in most breeds and evidence for parallel selective pressure for loci on chromosome 6 between Ayrshire and Brown Swiss and for loci on chromosome 20 between Holstein and Jersey. We calculated inbreeding coefficients using 3 different approaches, pedigree-based (FPED), marker-based using a genomic relationship matrix (FGRM), and segment-based using ROH (FROH). The average inbreeding coefficient ranged from 0.06 in Ayrshires and Brown Swiss to 0.08 in Jerseys and Holsteins using FPED, from 0.22 in Holsteins to 0.29 in Guernsey and Jerseys using FGRM, and from 0.11 in Ayrshires to 0.17 in Jerseys using FROH. In addition, the effective population size at past generations (5-100 generations ago), the yearly rate of inbreeding, and the effective population size in 3 recent periods (2000-2009, 2010-2014, and 2015-2018) were determined in each breed to ascertain current and historical trends of genetic diversity. We found a historical trend of decreasing effective population size in the last 100 generations in all breeds and breed differences in the effect of the recent implementation of genomic selection on inbreeding accumulation.


Assuntos
Endogamia , Condicionamento Físico Animal , Bovinos/genética , Animais , Polimorfismo de Nucleotídeo Único , Genoma , Genômica , Homozigoto , Genótipo
15.
Genet Sel Evol ; 53(1): 50, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134619

RESUMO

BACKGROUND: While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. RESULTS: We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. CONCLUSIONS: In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


Assuntos
Bovinos/genética , Endogamia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Seleção Artificial , Animais , Aptidão Genética , Depressão por Endogamia , Linhagem , Característica Quantitativa Herdável , Carne Vermelha/normas
16.
Genet Sel Evol ; 53(1): 68, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461820

RESUMO

BACKGROUND: The advent of genomic information and the reduction in the cost of genotyping have led to the use of genomic information to estimate genomic inbreeding as an alternative to pedigree inbreeding. Using genomic measures, effects of genomic inbreeding on production and fertility traits have been observed. However, there have been limited studies on the specific genomic regions causing the observed negative association with the trait of interest. Our aim was to identify unique run of homozygosity (ROH) genotypes present within a given genomic window that display negative associations with production and fertility traits and to quantify the effects of these identified ROH genotypes. METHODS: In total, 50,575 genotypes based on a 50K single nucleotide polymorphism (SNP) array and 259,871 pedigree records were available. Of these 50,575 genotypes, 46,430 cows with phenotypic records for production and fertility traits and having a first calving date between 2008 and 2018 were available. Unique ROH genotypes identified using a sliding-window approach were fitted into an animal mixed model as fixed effects to determine their effect on production and fertility traits. RESULTS: In total, 133 and 34 unique ROH genotypes with unfavorable effects were identified for production and fertility traits, respectively, at a 1% genome-wise false discovery rate. Most of these ROH regions were located on bovine chromosomes 8, 13, 14 and 19 for both production and fertility traits. For production traits, the average of all the unfavorably identified unique ROH genotypes effects were estimated to decrease milk yield by 247.30 kg, fat yield by 11.46 kg and protein yield by 8.11 kg. Similarly, for fertility traits, an average 4.81-day extension in first service to conception, a 0.16 increase in number of services, and a - 0.07 incidence in 56-day non-return rate were observed. Furthermore, a ROH region located on bovine chromosome 19 was identified that, when homozygous, had a negative effect on production traits. Signatures of selection proximate to this region have implicated GH1 as a potential candidate gene, which encodes the growth hormone that binds the growth hormone receptor. This observed negative effect could be a consequence of unfavorable alleles in linkage disequilibrium with favorable alleles. CONCLUSIONS: ROH genotypes with unfavorable effects on production and fertility traits were identified within and across multiple traits on most chromosomes. These identified ROH genotypes could be included in mate selection programs to minimize their frequency in future generations.


Assuntos
Bovinos/genética , Fertilidade/genética , Homozigoto , Alelos , Animais , Canadá , Feminino , Endogamia , Polimorfismo de Nucleotídeo Único
17.
J Anim Breed Genet ; 138(2): 223-236, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32979243

RESUMO

The impact of gut microbiome composition was investigated at different stages of production (weaning, Mid-test and Off-test) on meat quality and carcass composition traits of 1,123 three-way crossbred pigs. Data were analysed using linear mixed models which included the fixed effects of dam line, contemporary group and gender as well as the random effects of pen, animal and microbiome information at different stages. The contribution of the microbiome to all traits was prominent although it varied over time, increasing from weaning to Off-test for most traits. Microbiability estimates of carcass composition traits were greater than that of meat quality traits. Among all of the traits analysed, belly weight (BEL) had a higher microbiability estimate (0.29 ± 0.04). Adding microbiome information did not affect the estimates of genomic heritability of meat quality traits but affected the estimates of carcass composition traits. Fat depth had a greater decrease (10%) in genomic heritability at Off-test. High microbial correlations were found among different traits, particularly with traits related to fat deposition with a decrease in the genomic correlation up to 20% for loin weight and BEL. This suggested that genomic correlation was partially contributed by genetic similarity of microbiome composition. The results indicated that better understanding of microbial composition could aid the improvement of complex traits, particularly the carcass composition traits in swine by inclusion of microbiome information in the genetic evaluation process.


Assuntos
Genoma , Carne de Porco , Animais , Composição Corporal , Peso Corporal/genética , Fenótipo , Suínos , Desmame
18.
J Anim Breed Genet ; 138(2): 259-273, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32975329

RESUMO

This study aimed to investigate interpopulation variation due to sex, breed and age, and the intrapopulation variation in the form of genetic variance for recombination in swine. Genome-wide recombination rate and recombination occurrences (RO) were traits studied in Landrace (LR) and Large White (LW) male and female populations. Differences were found for sex, breed, sex-breed interaction, and age effects for genome-wide recombination rate and RO at one or more chromosomes. Dams were found to have a higher genome-wide recombination rate and RO at all chromosomes than sires. LW animals had higher genome-wide recombination rate and RO at seven chromosomes but lower at two chromosomes than LR individuals. The sex-breed interaction effect did not show any pattern not already observable by sex. Recombination increased with increasing parity in females, while in males no effect of age was observed. We estimated heritabilities and repeatabilities for both investigated traits and obtained the genetic correlation between male and female genome-wide recombination rate within each of the two breeds studied. Estimates of heritability and repeatability were low (h2  = 0.01-0.26; r = 0.18-0.42) for both traits in all populations. Genetic correlations were high and positive, with estimates of 0.98 and 0.94 for the LR and LW breeds, respectively. We performed a GWAS for genome-wide recombination rate independently in the four sex/breed populations. The results of the GWAS were inconsistent across the four populations with different significant genomic regions identified. The results of this study provide evidence of variability for recombination in purebred swine populations.


Assuntos
Genoma , Genômica , Recombinação Genética , Animais , Feminino , Masculino , Fenótipo , Suínos
19.
BMC Genomics ; 21(1): 605, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873253

RESUMO

BACKGROUND: Phenotypic performances of livestock animals decline with increasing levels of inbreeding, however, the noticeable decline known as inbreeding depression, may not be due only to the total level of inbreeding, but rather could be distinctly associated with more recent or more ancient inbreeding. Therefore, splitting inbreeding into different age classes could help in assessing detrimental effects of different ages of inbreeding. Hence, this study sought to investigate the effect of recent and ancient inbreeding on production and fertility traits in Canadian Holstein cattle with both pedigree and genomic records. Furthermore, inbreeding coefficients were estimated using traditional pedigree measure (FPED) and genomic measures using segment based (FROH) and marker-by-marker (FGRM) based approaches. RESULTS: Inbreeding depression was found for all production and most fertility traits, for example, every 1% increase in FPED, FROH and FGRM was observed to cause a - 44.71, - 40.48 and - 48.72 kg reduction in 305-day milk yield (MY), respectively. Similarly, an extension in first service to conception (FSTC) of 0.29, 0.24 and 0.31 day in heifers was found for every 1% increase in FPED, FROH and FGRM, respectively. Fertility traits that did not show significant depression were observed to move in an unfavorable direction over time. Splitting both pedigree and genomic inbreeding into age classes resulted in recent age classes showing more detrimental inbreeding effects, while more distant age classes caused more favorable effects. For example, a - 1.56 kg loss in 305-day protein yield (PY) was observed for every 1% increase in the most recent pedigree age class, whereas a 1.33 kg gain was found per 1% increase in the most distant pedigree age class. CONCLUSIONS: Inbreeding depression was observed for production and fertility traits. In general, recent inbreeding had unfavorable effects, while ancestral inbreeding had favorable effects. Given that more negative effects were estimated from recent inbreeding when compared to ancient inbreeding suggests that recent inbreeding should be the primary focus of selection programs. Also, further work to identify specific recent homozygous regions negatively associated with phenotypic traits could be investigated.


Assuntos
Bovinos/genética , Fertilidade , Endogamia , Linhagem , Característica Quantitativa Herdável , Animais , Bovinos/fisiologia , Feminino , Homozigoto , Masculino , Seleção Artificial
20.
BMC Genomics ; 21(1): 41, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931710

RESUMO

BACKGROUND: Health traits are of significant economic importance to the dairy industry due to their effects on milk production and associated treatment costs. Genome-wide association studies (GWAS) provide a means to identify associated genomic variants and thus reveal insights into the genetic architecture of complex traits and diseases. The objective of this study is to investigate the genetic basis of seven health traits in dairy cattle and to identify potential candidate genes associated with cattle health using GWAS, fine mapping, and analyses of multi-tissue transcriptome data. RESULTS: We studied cow livability and six direct disease traits, mastitis, ketosis, hypocalcemia, displaced abomasum, metritis, and retained placenta, using de-regressed breeding values and more than three million imputed DNA sequence variants. After data edits and filtering on reliability, the number of bulls included in the analyses ranged from 11,880 (hypocalcemia) to 24,699 (livability). GWAS was performed using a mixed-model association test, and a Bayesian fine-mapping procedure was conducted to calculate a posterior probability of causality to each variant and gene in the candidate regions. The GWAS detected a total of eight genome-wide significant associations for three traits, cow livability, ketosis, and hypocalcemia, including the bovine Major Histocompatibility Complex (MHC) region associated with livability. Our fine-mapping of associated regions reported 20 candidate genes with the highest posterior probabilities of causality for cattle health. Combined with transcriptome data across multiple tissues in cattle, we further exploited these candidate genes to identify specific expression patterns in disease-related tissues and relevant biological explanations such as the expression of Group-specific Component (GC) in the liver and association with mastitis as well as the Coiled-Coil Domain Containing 88C (CCDC88C) expression in CD8 cells and association with cow livability. CONCLUSIONS: Collectively, our analyses report six significant associations and 20 candidate genes of cattle health. With the integration of multi-tissue transcriptome data, our results provide useful information for future functional studies and better understanding of the biological relationship between genetics and disease susceptibility in cattle.


Assuntos
Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Bovinos , Indústria de Laticínios , Predisposição Genética para Doença , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA