Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 613(7943): 262-267, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631646

RESUMO

Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids1-3. The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations4-8, topological quantum gates9-11 and exotic few-body states12-15. However, p-wave and other antisymmetric interactions are weak in naturally occurring systems16,17, and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss18-24. Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p-wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p-wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p-wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p-wave interactions provides a necessary component for the assembly of multiorbital lattice models25,26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering27,28.

2.
Phys Rev Lett ; 127(14): 143401, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652195

RESUMO

We consider the nonequilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited band of an optical lattice. A specific lattice depth and filling configuration is designed to allow the p_{x} and p_{y} excited orbital degrees of freedom to act as a pseudospin. Starting from the full Hamiltonian for p-wave interactions in a periodic potential, we derive an extended Hubbard-type model that describes the anisotropic lattice dynamics of the excited orbitals at low energy. We then show how dispersion engineering can provide a viable route to realizing collective behavior driven by p-wave interactions. In particular, Bragg dressing and lattice depth can reduce single-particle dispersion rates, such that a collective many-body gap is opened with only moderate Feshbach enhancement of p-wave interactions. Physical insight into the emergent gap-protected collective dynamics is gained by projecting the Hamiltonian into the Dicke manifold, yielding a one-axis twisting model for the orbital pseudospin that can be probed using conventional Ramsey-style interferometry. Experimentally realistic protocols to prepare and measure the many-body dynamics are discussed, including the effects of band relaxation, particle loss, spin-orbit coupling, and doping.

3.
Phys Rev Lett ; 124(24): 240401, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639830

RESUMO

We propose a protocol for generating generalized Greenberger-Horne-Zeilinger (GHZ) states using ultracold fermions in 3D optical lattices or optical tweezer arrays. The protocol uses the interplay between laser driving, on site interactions and external trapping confinement to enforce energetic spin- and position-dependent constraints on the atomic motion. These constraints allow us to transform a local superposition into a GHZ state through a stepwise protocol that flips one site at a time. The protocol requires no site-resolved drives or spin-dependent potentials, exhibits robustness to slow global laser phase drift, and naturally makes use of the harmonic trap that would normally cause difficulties for entanglement-generating protocols in optical lattices. We also discuss an improved protocol that can compensate for holes in the loadout at the cost of increased generation time. The state can immediately be used for quantum-enhanced metrology in 3D optical lattice clocks, opening a window to push the sensitivity of state-of-the-art sensors beyond the standard quantum limit.

4.
Phys Rev Lett ; 123(13): 130402, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697521

RESUMO

We study a driven, spin-orbit coupled fermionic system in a lattice at the resonant regime where the drive frequency equals the Hubbard repulsion, for which nontrivial constrained dynamics emerge at fast timescales. An effective density-dependent tunneling model is derived, and it is examined in the sparse filling regime in one dimension. The system exhibits entropic self-localization, where while even numbers of atoms propagate ballistically, odd numbers form localized bound states induced by an effective attraction from a higher configurational entropy. These phenomena occur in the strong coupling limit where interactions impose only a constraint with no explicit Hamiltonian term. We show how the constrained dynamics lead to quantum few-body scars and map to an Anderson impurity model with an additional intriguing feature of nonreciprocal scattering. Connections to many-body scars and localization are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA