Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272871

RESUMO

Amide Proton Transfer-weighted (APTw) imaging is a molecular MRI technique used to quantify protein concentrations in gliomas, which have heterogeneous components with varying cellularity and metabolic activity. This study aimed to assess the correlation between the component-specific APT signal of the neoplasm and WHO grade, molecular profile and survival status. Sixty-one patients with adult-type diffuse gliomas were retrospectively analyzed. APT values were semi-automatically extracted from tumor solid and, whenever present, necrotic components. APT values were compared between groups stratified by WHO grade, IDH-mutation, MGMT promoter methylation and 1- and 2-year survival status using Wilcoxon rank-sum test, adjusting for multiple comparisons. Overall survival (OS) was analyzed in the subgroup of 48 patients with grade 4 tumors using Cox proportional-hazards models. Random-effects models were used to assess inter-subject heterogeneity of the mean APT values in each tumor component. APT values of the solid component significantly differed between patients with grades 2-3 and 4 tumors (mean 1.58 ± 0.50 vs. 2.04 ± 0.56, p = 0.028) and correlated with OS after 1 year (1.81 ± 0.58 in survivors vs. 2.17 ± 0.51 in deceased patients, p = 0.030). APT values did not differ by IDH-mutation, MGMT methylation, and 2-year survival status. Within grade 4 glioma patients, higher APT kurtosis of the solid component was a negative prognostic factor (hazard ratio = 1.60, p = 0.040). Mean APT values of the necrosis showed high inter-subject variability, although most necrotic tumors were grade 4 and IDH wildtype. In conclusion, APTw imaging in the solid component provided metrics associated with glioma grade and survival status but showed weak correlation with IDH-mutation and MGMT promoter methylation status, in contrast to previous works. Further research is needed to understand APT signal variability within the necrotic component of high-grade gliomas.

2.
Cureus ; 12(5): e8151, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32550070

RESUMO

Aim To study ground-glass opacities (GGO) not only from the coronavirus 2019 (COVID-19) pneumonia" perspective but also as a radiological presentation of other pathologies with comparable features. Methods We enrolled 33 patients admitted to Policlinico Universitario G. B. Rossi who underwent non-contrast-enhanced (NCE) or contrast-enhanced (CE) chest computed tomography (CT) between March 12 and April 12. All patients with CT-detected ground-glass opacity (GGO) were included. All patients resulted as COVID-19 negative at the reverse transcription-polymerase chain reaction (RT-PCR) assay. We studied the different pathologies underlying GGO features: neoplastic diseases and non-neoplastic diseases (viral pneumonias, interstitial pneumonias, and cardiopulmonary diseases) in order to avoid pitfalls and to reach the correct diagnosis. Results All CT scans detected GGOs. Symptomatic patients were 25/33 (75.7%). At the clinical presentation, they reported fever and dry cough; in six out of 25 cases, dyspnea was also reported (24%). Thirty-three (33; 100%) showed GGO at CT: 15/33 (45.45%) presented pure GGO, and 18/33 (54.54%) showed GGO with consolidation. The RT-PCR assay was negative in 100%. We investigated other potential underlying diseases to explain imaging features: neoplastic causes (8/33, 24.24%) and non-neoplastic causes, in particular, infectious pneumonias (16/33, 48,48 %, viral and fungal), interstitial pneumonias (4/33, 12,12%), and cardio-pulmonary disease (5/33, 15,15%). Conclusions GGO remains a diagnostic challenge. Although CT represents a fundamental diagnostic tool because of its sensitivity, it still needs to be integrated with clinical data to achieve the best clinical management. In the presence of typical imaging features (e.g. GGO and consolidation), the radiologist should focus on the pandemic and manage a suspect patient as COVID-19 positive until proven to be negative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA