Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 215(Pt 1): 114242, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36067842

RESUMO

Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.


Assuntos
Quitosana , Fibroínas , Ozônio , Poluentes Químicos da Água , Purificação da Água , Zeína , Albuminas , Alginatos , Corantes , Gelatina , Queratinas , Lignina , Oxirredução , Óxidos , Amido , Águas Residuárias , Poluentes Químicos da Água/química
2.
ACS Omega ; 7(42): 37264-37278, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312427

RESUMO

This study reveals the state-of-the-art fabrication of a tripolymer-based electrospun nanofiber (NF) system to enhance the release, solubility, and transdermal penetration of curcumin (Cur) with the aid of in situ release of infused castor oil (Co). In this regard, Cur-loaded Co-infused polyethylene oxide (PEO), ethyl cellulose (EC), and polyvinyl pyrrolidone (PVP) tripolymer-based NF systems were developed to produce a hybridized transdermal skin patch. Weight percentages of 1-4% Cur and 3-10% of Co were blended with PEO-EC-PEO and PEO-EC-PVP polymer systems. The prepared NFs were characterized by SEM, TEM, FT-IR analysis, PXRD, differential scanning calorimetry (DSC), and XPS. Dialysis membranes and vertical Franz diffusion cells were used to study the in vitro drug release and transdermal penetration, respectively. The results indicated that maintaining a Cur concentration of 1-3 wt % with 3 wt % Co in both PEO-EC-Co-Cur@PEO and PEO-EC-Co-Cur@PVP gave rise to nanofibers with lowered diameters (144.83 ± 48.05-209.26 ± 41.80 nm and 190.20 ± 59.42-404.59 ± 45.31 nm). Lowered crystallinity observed from the PXRD patterns and the disappearance of exothermic peaks corresponding to the melting point of Cur suggested the formation of an amorphous NF structure. Furthermore, the XPS data revealed that the Cur loading will possibly take place at the inner interface of PEO-EC-Co-PEO and PEO-EC-Co-PVP NFs rather than on the surface. The beneficiary role of Co on the release and dermal penetration of Cur was further confirmed from the respective release data which indicated that PEO-EC-Co-Cur@PEO would lead to a rapid release (4-5 h), while PEO-EC-Co-Cur@PVP would lead to a sustained release over a period of 24 h in the presence of Co. Transdermal penetration of the released Cur was further evidenced with the development of color in the receiver compartment of the diffusion cell. DPPH results further corroborated that a sustained antioxidant activity is observed in the released Cur where the free-radical scavenging activity is intact even after subjecting to an electrospinning process and under extreme freeze-thaw conditions.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31826328

RESUMO

Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Sistemas de Liberação de Medicamentos , Compostos Inorgânicos/química , Nanopartículas/química , Compostos Orgânicos/química , Animais , Humanos , Concentração de Íons de Hidrogênio , Microtecnologia
4.
R Soc Open Sci ; 5(12): 181369, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30662742

RESUMO

This study was carried out to develop a simple and efficient method to isolate DNA directly from biological samples using iron oxide nanoparticles (IONPs) functionalized with polyethyleneimine (PEI). IONPs were synthesized via co-precipitation method followed with direct attachment of branched PEI. Nanoparticles were characterized using STEM, FT-IR spectroscopy and XRD analysis. The binding capacity of synthesized PEI-IONPs for plasmid and genomic DNA was assessed using purified DNA samples. In order to elute bound DNA, elution conditions were optimized, changing pH, salt concentration and temperature. Synthesized PEI-IONPs were subjected to isolation of DNA from bacterial cell culture and from human blood. PCR and magnetofection of the enhanced green fluorescence protein (EGFP) were carried out to verify the downstream applications of isolated DNA. The results indicated that the synthesized nanoparticles were of 5-10 nm. The binding capacity of PEI-IONPs for plasmid DNA and genomic DNA were 5.4 and 8.4 µg mg-1, respectively, which were even higher than the commercially available kits such as Mag-bind, MagJET and Magmax. The optimized condition for plasmid DNA elution was 0.1 M Tris HCl (pH 10.0), 1.5 M NaCl and 5% formamide, maintained at the temperature of 60°C. The optimized condition for genomic DNA elution was 0.1 M Tris HCl (pH 10.0), 1.5 M NaCl and 10% formamide, maintained at 60°C. PCR and magnetofection processes were successful. This study revealed that the magnetic separation of DNA using PEI-IONPs is a simple and efficient method for direct isolation of DNA from biological samples which can be then used in various downstream applications.

5.
R Soc Open Sci ; 5(1): 171557, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29410859

RESUMO

This study was focused on the preparation of metal and polymer-mediated porous crystalline hydroxyapatite (HAp) nanocomposites for environmental applications. Four different nano HAp systems were synthesized, namely, microwave irradiated HAp (M1), Zn doped HAp (M2), Mg-doped HAp (M3) and sodium alginate incorporated HAp (M4), and characterized using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, nuclear magnetic resonance (NMR), X-ray fluorescence, thermogravimetric analysis and Brunauer-Emmett-Teller (BET) analyses. Systems M1-M4 showed morphologies similar to coral shapes, polymer-like interconnected structures, sponges and feathery mycelium assemblies. Using XRD, selected area electron diffraction patterns and 1H and 31P CP/MAS solid-state NMR studies, crystallinity variation was observed from highest to lowest in the order of M4 > M1 > M3 > M2. Surface area estimates using BET isotherm reflected the highest surface area for M3, and M1 > M2 > M4. Four systems of M1-M4 were used as potential adsorbent materials for the removal of metal containing azo dye from aqueous system. Adsorption data were correlated to Freundlich and Langmuir isotherm models. According to the results, the highest capacity of 212.8 mg g-1 was exhibited by M4 having mycelium like morphology with alginate groups. This study highlights the possibility of developing HAp nanocomposites for the effective removal of dye contaminants in the environment.

6.
Chem Cent J ; 12(1): 119, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470922

RESUMO

Ample attention has been devoted to the construction of anti-cancer drug delivery systems with increased stability, and controlled and targeted delivery, minimizing toxic effects. In this study we have designed a magnetically attractive hydroxyapatite (m-HAP) based alginate polymer bound nanocarrier to perform targeted, controlled and pH sensitive drug release of 6-gingerol, doxorubicin, and their combination, preferably at low pH environments (pH 5.3). They have exhibited higher encapsulation efficiency which is in the range of 97.4-98.9% for both 6-gingerol and doxorubicin molecules whereas the co-loading has accounted for a value of 81.87 ± 0.32%. Cell proliferation assays, fluorescence imaging and flow cytometric analysis, demonstrated the remarkable time and dose responsive anti-proliferative effect of drug loaded nanoparticles on MCF-7 cells and HEpG2 cells compared with their neat counter parts. Also, these systems have exhibited significantly reduced toxic effects on non-targeted, non-cancerous cells in contrast to the excellent ability to selectively kill cancerous cells. This study has suggested that this HAP based system is a versatile carrier capable of loading various drug molecules, ultimately producing a profound anti-proliferative effect.

7.
Eur J Pharm Biopharm ; 128: 18-26, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625162

RESUMO

This study was focused on developing a drug carrier system composed of a polymer containing hydroxyapatite (HAp) shell and a magnetic core of iron oxide nanoparticles. Doxorubicin and/or curcumin were loaded into the carrier via a simple diffusion deposition approach, with encapsulation efficiencies (EE) for curcumin and doxorubicin of 93.03 ±â€¯0.3% and 97.37 ±â€¯0.12% respectively. The co-loading of curcumin and doxorubicin led to a total EE of 76.02 ±â€¯0.48%. Release studies were carried out at pH 7.4 and 5.3, and revealed a greater extent of release at pH 5.3, showing the formulations to have potential applications in tumor microenvironments. Cytotoxicity assays, fluorescence imaging and flow cytometry demonstrated that the formulations could effectively inhibit the growth of MCF-7 (breast) and HEpG2 (liver) cancer cells, being more potent than the free drug molecules both in terms of dose and duration of action. Additionally, hemolysis tests and cytotoxicity evaluations determined the drug-loaded carriers to be non-toxic towards non-cancerous cells. These formulations thus have great potential in the development of new cancer therapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Neoplasias Hepáticas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Curcumina/administração & dosagem , Doxorrubicina/administração & dosagem , Durapatita/química , Feminino , Compostos Férricos/química , Citometria de Fluxo , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Masculino , Nanopartículas/química , Imagem Óptica , Polímeros/química , Ratos Wistar
8.
Eur J Pharm Biopharm ; 117: 29-38, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28330763

RESUMO

Developing a drug carrier system which could perform targeted and controlled release over a period of time is utmost concern in the pharmaceutical industry. This is more relevant when designing drug carriers for poorly water soluble drug molecules such as curcumin and 6-gingerol. Development of a drug carrier system which could overcome these limitations and perform controlled and targeted drug delivery is beneficial. This study describes a promising approach for the design of novel pH sensitive sodium alginate, hydroxyapatite bilayer coated iron oxide nanoparticle composite (IONP/HAp-NaAlg) via the co-precipitation approach. This system consists of a magnetic core for targeting and a NaAlg/HAp coating on the surface to accommodate the drug molecules. The nanocomposite was characterized using FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The loading efficiency and loading capacity of curcumin and 6-gingerol were examined. In vitro drug releasing behavior of curcumin and 6-gingerol was studied at pH 7.4 and pH 5.3 over a period of seven days at 37°C. The mechanism of drug release from the nanocomposite of each situation was studied using kinetic models and the results implied that, the release is typically via diffusion and a higher release was observed at pH 5.3. This bilayer coated system can be recognized as a potential drug delivery system for the purpose of curcumin and 6-gingerol release in targeted and controlled manner to treat diseases such as cancer.


Assuntos
Alginatos/química , Antineoplásicos/química , Durapatita/química , Compostos Férricos/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Alginatos/análise , Antineoplásicos/análise , Catecóis/análise , Catecóis/química , Curcumina/análise , Curcumina/química , Preparações de Ação Retardada/análise , Preparações de Ação Retardada/química , Portadores de Fármacos/análise , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Durapatita/análise , Álcoois Graxos/análise , Álcoois Graxos/química , Compostos Férricos/análise , Ácido Glucurônico/análise , Ácido Glucurônico/química , Ácidos Hexurônicos/análise , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/análise , Polietilenoglicóis/análise , Polietilenoglicóis/química , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA