Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Rheum Dis ; 76(1): 244-251, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27113414

RESUMO

OBJECTIVES: TWIST1 is a member of the class B of basic helix-loop-helix transcription factors that regulates cell lineage determination and differentiation and has been implicated in epithelial-to-mesenchymal transition. Here, we aimed to investigate the role of TWIST1 for the activation of resident fibroblasts in systemic sclerosis (SSc). METHODS: The expression of Twist1 in fibroblasts was modulated by forced overexpression or siRNA-mediated knockdown. Interaction of Twist1, E12 and inhibitor Of differentiation (Id) was analysed by co-immunoprecipitation. The role of Twist1 in vivo was evaluated using inducible, conditional knockout mice with either ubiquitous or fibroblast-specific depletion of Twist1. Mice were either challenged with bleomycin or overexpressing a constitutively active transforming growth factor (TGF)ß receptor I. RESULT: The expression of TWIST1 was increased in fibroblasts in fibrotic human and murine skin in a TGFß/SMAD3-dependent manner. TWIST1 in turn enhanced TGFß-induced fibroblast activation in a p38-dependent manner. The stimulatory effects of TWIST1 on resident fibroblasts were mediated by TWIST1 homodimers. TGFß promotes the formation of TWIST1 homodimers by upregulation of TWIST1 and by induction of inhibitor of DNA-binding proteins, which have high affinity for E12/E47 and compete against TWIST1 for E12/E47 binding. Mice with selective depletion of Twist1 in fibroblasts are protected from experimental skin fibrosis in different murine models to a comparable degree as mice with ubiquitous depletion of Twist1. CONCLUSIONS: Our data identify TWIST1 as a central pro-fibrotic factor in SSc, which facilitates fibroblast activation by amplifying TGFß signalling. Targeting of TWIST1 may thus be a novel approach to normalise aberrant TGFß signalling in SSc.


Assuntos
Fibroblastos/metabolismo , Proteínas Nucleares/fisiologia , Escleroderma Sistêmico/metabolismo , Proteína 1 Relacionada a Twist/fisiologia , Animais , Estudos de Casos e Controles , Feminino , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerização Proteica/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais/fisiologia , Pele/patologia , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/biossíntese , Proteína 1 Relacionada a Twist/deficiência , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
2.
Ann Rheum Dis ; 74(7): 1408-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24567525

RESUMO

OBJECTIVES: We have previously described the antifibrotic role of the soluble guanylate cyclase (sGC). The mode of action, however, remained elusive. In the present study, we describe a novel link between sGC signalling and transforming growth factor ß (TGFß) signalling that mediates the antifibrotic effects of the sGC. METHODS: Human fibroblasts and murine sGC knockout fibroblasts were treated with the sGC stimulator BAY 41-2272 or the stable cyclic guanosine monophosphate (cGMP) analogue 8-Bromo-cGMP and stimulated with TGFß. sGC knockout fibroblasts were isolated from sGCI(fl/fl) mice, and recombination was induced by Cre-adenovirus. In vivo, we studied the antifibrotic effects of BAY 41-2272 in mice overexpressing a constitutively active TGF-ß1 receptor. RESULTS: sGC stimulation inhibited TGFß-dependent fibroblast activation and collagen release. sGC knockout fibroblasts confirmed that the sGC is essential for the antifibrotic effects of BAY 41-2272. Furthermore, 8-Bromo-cGMP reduced TGFß-dependent collagen release. While nuclear p-SMAD2 and 3 levels, SMAD reporter activity and transcription of classical TGFß target genes remained unchanged, sGC stimulation blocked the phosphorylation of ERK. In vivo, sGC stimulation inhibited TGFß-driven dermal fibrosis but did not change p-SMAD2 and 3 levels and TGFß target gene expression, confirming that non-canonical TGFß pathways mediate the antifibrotic sGC activity. CONCLUSIONS: We elucidated the antifibrotic mode of action of the sGC that increases cGMP levels, blocks non-canonical TGFß signalling and inhibits experimental fibrosis. Since sGC stimulators have shown excellent efficacy and tolerability in phase 3 clinical trials for pulmonary arterial hypertension, they may be further developed for the simultaneous treatment of fibrosis and vascular disease in systemic sclerosis.


Assuntos
Fibroblastos/patologia , Guanilato Ciclase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/fisiopatologia , Transdução de Sinais/fisiologia , Pele/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Estudos de Casos e Controles , Células Cultivadas , Colágeno/metabolismo , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/prevenção & controle , Guanilato Ciclase/deficiência , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores de Fatores de Crescimento Transformadores beta/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Proteínas Smad/metabolismo , Guanilil Ciclase Solúvel , Fator de Crescimento Transformador beta/metabolismo
3.
Int J Mol Sci ; 14(8): 15532-45, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23892598

RESUMO

Ribosome-inactivating proteins (RIPs), enzymes that are widely distributed in the plant kingdom, inhibit protein synthesis by depurinating rRNA and many other polynucleotidic substrates. Although RIPs show antiviral, antifungal, and insecticidal activities, their biological and physiological roles are not completely understood. Additionally, it has been described that RIP expression is augmented under stressful conditions. In this study, we evaluated protein synthesis inhibition activity in partially purified basic proteins (hereafter referred to as RIP activity) from tissue extracts of Fragaria × ananassa (strawberry) cultivars with low (Dora) and high (Record) tolerance to root pathogens and fructification stress. Association between the presence of RIP activity and the crop management (organic or integrated soil), growth stage (quiescence, flowering, and fructification), and exogenous stress (drought) were investigated. RIP activity was found in every tissue tested (roots, rhizomes, leaves, buds, flowers, and fruits) and under each tested condition. However, significant differences in RIP distribution were observed depending on the soil and growth stage, and an increase in RIP activity was found in the leaves of drought-stressed plants. These results suggest that RIP expression and activity could represent a response mechanism against biotic and abiotic stresses and could be a useful tool in selecting stress-resistant strawberry genotypes.


Assuntos
Fragaria/enzimologia , Fragaria/metabolismo , Extratos Vegetais/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Animais , Estágios do Ciclo de Vida , Biossíntese de Proteínas , RNA Ribossômico/antagonistas & inibidores , RNA Ribossômico/metabolismo , Estresse Fisiológico
4.
Anticancer Res ; 43(1): 405-408, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585214

RESUMO

BACKGROUND/AIM: Cone-beam computed tomography (CBCT) is the most commonly used system in modern radiotherapy of prostate cancer for daily positioning verification. The use of intraprostatic radiopaque fiducials (FMs) may be added to CBCT. We wanted to investigate the possible advantage of using FMs in daily CBCT repositioning. MATERIALS AND METHODS: We selected three CBCTs for each treatment course for 13 patients (seven with and six without use of FMs) treated at our centre. Seven experienced Radiation Oncologists retrospectively reviewed the CBCTs, recording couch movements for correct patient positioning, and time spent to do it. Analysis of variance and t-test were carried out for comparison of different groups and for differences in mean values of the movements recorded (with p<0.05 as significance level). RESULTS: No statistically significant difference was found between operators in the analysis of images with FMs nor of images without them. A difference was only found in the mean corrections in couch rotation and pitch angle, which were higher in the FM group, and in the mean time for image analysis, which was shorter in this group. Using the van Herk formula, we found a possible reduction of clinical target volume and planning target volume margins for the FM group. CONCLUSION: According to our study, the use of intraprostatic FMs in daily CBCT seems useful for better detection of and correction for non-negligible rotational errors. Furthermore, FMs reduced the time to treatment start, which is very important in reducing the risk of intrafraction organ motion. These results need to be confirmed by further studies.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Masculino , Humanos , Próstata/diagnóstico por imagem , Radioterapia Guiada por Imagem/métodos , Estudos Retrospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Marcadores Fiduciais , Tomografia Computadorizada de Feixe Cônico/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Explor Target Antitumor Ther ; 2(2): 156-173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36046142

RESUMO

Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.

6.
Nat Med ; 21(2): 150-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25581517

RESUMO

Mesenchymal responses are an essential aspect of tissue repair. Failure to terminate this repair process correctly, however, results in fibrosis and organ dysfunction. Therapies that block fibrosis and restore tissue homeostasis are not yet available for clinical use. Here we characterize the nuclear receptor NR4A1 as an endogenous inhibitor of transforming growth factor-ß (TGF-ß) signaling and as a potential target for anti-fibrotic therapies. NR4A1 recruits a repressor complex comprising SP1, SIN3A, CoREST, LSD1, and HDAC1 to TGF-ß target genes, thereby limiting pro-fibrotic TGF-ß effects. Even though temporary upregulation of TGF-ß in physiologic wound healing induces NR4A1 expression and thereby creates a negative feedback loop, the persistent activation of TGF-ß signaling in fibrotic diseases uses AKT- and HDAC-dependent mechanisms to inhibit NR4A1 expression and activation. Small-molecule NR4A1 agonists can overcome this lack of active NR4A1 and inhibit experimentally-induced skin, lung, liver, and kidney fibrosis in mice. Our data demonstrate a regulatory role of NR4A1 in TGF-ß signaling and fibrosis, providing the first proof of concept for targeting NR4A1 in fibrotic diseases.


Assuntos
Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Cirrose Hepática Alcoólica/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adolescente , Adulto , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Proteínas Correpressoras/metabolismo , Feminino , Fibrose , Histona Desacetilase 1/metabolismo , Histona Desmetilases/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Fígado/patologia , Cirrose Hepática Alcoólica/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Escleroderma Sistêmico/patologia , Transdução de Sinais , Complexo Correpressor Histona Desacetilase e Sin3 , Pele/citologia , Pele/patologia , Fator de Transcrição Sp1/metabolismo , Cicatrização , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA