Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 252: 121178, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309063

RESUMO

As COVID-19 becomes endemic, public health departments benefit from improved passive indicators, which are independent of voluntary testing data, to estimate the prevalence of COVID-19 in local communities. Quantification of SARS-CoV-2 RNA from wastewater has the potential to be a powerful passive indicator. However, connecting measured SARS-CoV-2 RNA to community prevalence is challenging due to the high noise typical of environmental samples. We have developed a generalized pipeline using in- and out-of-sample model selection to test the ability of different correction models to reduce the variance in wastewater measurements and applied it to data collected from treatment plants in the Chicago area. We built and compared a set of multi-linear regression models, which incorporate pepper mild mottle virus (PMMoV) as a population biomarker, Bovine coronavirus (BCoV) as a recovery control, and wastewater system flow rate into a corrected estimate for SARS-CoV-2 RNA concentration. For our data, models with BCoV performed better than those with PMMoV, but the pipeline should be used to reevaluate any new data set as the sources of variance may change across locations, lab methods, and disease states. Using our best-fit model, we investigated the utility of RNA measurements in wastewater as a leading indicator of COVID-19 trends. We did this in a rolling manner for corrected wastewater data and for other prevalence indicators and statistically compared the temporal relationship between new increases in the wastewater data and those in other prevalence indicators. We found that wastewater trends often lead other COVID-19 indicators in predicting new surges.


Assuntos
COVID-19 , Saúde Pública , SARS-CoV-2 , Tobamovirus , Animais , Bovinos , COVID-19/epidemiologia , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Nat Commun ; 15(1): 5425, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926339

RESUMO

Synthetic biology allows us to reuse, repurpose, and reconfigure biological systems to address society's most pressing challenges. Developing biotechnologies in this way requires integrating concepts across disciplines, posing challenges to educating students with diverse expertise. We created a framework for synthetic biology training that deconstructs biotechnologies across scales-molecular, circuit/network, cell/cell-free systems, biological communities, and societal-giving students a holistic toolkit to integrate cross-disciplinary concepts towards responsible innovation of successful biotechnologies. We present this framework, lessons learned, and inclusive teaching materials to allow its adaption to train the next generation of synthetic biologists.


Assuntos
Biologia Sintética , Biologia Sintética/educação , Biologia Sintética/métodos , Humanos , Biotecnologia/educação , Estudantes/psicologia
3.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005318

RESUMO

Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20 - 200 aM sensitivity without any specialized equipment. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA