Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(28): 18727-38, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27166746

RESUMO

Copper complexes of tetraphenylporphyrin (H2TPP) and tetrakis(pentafluorophenyl)porphyrin (H2TPP(F)) deposited as thin films on Au(111) have been studied experimentally and theoretically. Core level emissions from C 1s, N 1s, F 1s and Cu 2p as well as valence states of CuTPP and CuTPP(F) have been investigated using surface photoelectron spectroscopy. The interpretation of experimental results has been guided by theoretical calculations carried out on isolated species in the habit of the density functional theory. Reference to experimental and theoretical outcomes pertaining to H2TPP and H2TPP(F) allowed a confident and detailed assignment of the title molecules' X-ray and ultraviolet photoemission data. With specific reference to the latter, similar to copper phthalocyanine (CuPc), whose coordinative pocket mirrors the CuTPP/CuTPP(F) ones, the lowest ionization energy of the title compounds implies electron ejection from a ring orbital rather than from the Cu 3d-based singly occupied molecular orbital. Moreover, analogous to CuPc, the ionic contribution appears to play an important role in the Cu-N bonding. Nevertheless, differences in the number, symmetry, nature and relative position of CuTPP/CuTPP(F) occupied frontier orbitals compared to CuPc may be stated only by considering in great detail the Cu-ligand covalent interactions.

2.
Phys Chem Chem Phys ; 18(36): 24890-904, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27412494

RESUMO

The unoccupied electronic structure of thick films of tetraphenylporphyrin and tetrakis(pentafluorophenyl)porphyrin Cu(ii) complexes (hereafter, CuTPP and CuTPP(F)) deposited on Au(111) has been studied by combining the outcomes of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with those of spin-unrestricted time-dependent density functional (TD-DFT) calculations carried out either within the scalar relativistic zeroth order regular approximation (ZORA) framework (C, N and F K-edges) or by using the Tamm-Dancoff approximation coupled to ZORA and including spin-orbit effects (Cu L2,3-edges). Similarly to the modelling of NEXAFS outcomes pertaining to other Cu(ii) complexes, the agreement between theory and experiment is more than satisfactory, thus confirming the open-shell TD-DFT to be a useful tool to look into NEXAFS results pertinent to Cu(ii) compounds. The combined effect of metalation and phenyl (Ph) fluorine decoration is found to favour an extensive mixing between (Ph)σ* and pristine porphyrin macrocyle (pmc) (pmc)π* virtual levels. The lowest lying excitation in the C and N K-edge spectra of both CuTPP and CuTPP(F) is associated with a ligand-to-metal-charge-transfer transition, unambiguously revealed in the (CuTPP)N K-edge spectral pattern. Moreover, the comparison with literature data pertaining to the modelling of the (Cu(II))L2,3 features in the phthalocyanine-Cu(ii) (CuPc) complex provided further insights into how metal-to-ligand-charge-transfer transitions associated with excitations from 2p(Cu(II)) AOs to low-lying, ligand-based π* MOs may contribute to the Cu(ii) L2,3-edge intensity and thus weaken its believed relationship with the Cu(ii)-ligand symmetry-restricted covalency. Despite the coordinative pocket of CuTPP/CuTPP(F) mirroring CuPc, the ligand-field strength exerted by the phthalocyanine ligand on the Cu(ii) centre is experimentally found and theoretically confirmed to be slightly stronger than that experienced by Cu in CuTPP and CuTPP(F). On the whole, the obtained results complement those published in the near past by the same group on the occupied and empty states of the H2TPP and H2TPP(F) free ligands as well as on the occupied states of both CuTPP and CuTPP(F), thus providing the final piece to get a thorough description of electronic perturbations associated with the metalation and the Ph halogen decoration of H2TPP.

3.
Phys Chem Chem Phys ; 17(3): 2001-11, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25475366

RESUMO

The unoccupied electronic structure of tetrakis(phenyl)- and tetrakis(pentafluorophenyl)-porphyrin thick films deposited on SiO2/Si(100) native oxide surfaces has been thoroughly studied by combining the outcomes of near-edge X-ray absorption fine structure spectroscopy at the C, N, and F K-edges with those of scalar relativistic zeroth order regular approximation time-dependent density functional theory calculations carried out on isolated molecules. Both experimental and theoretical results concur to stress the electronic inertness of pristine porphyrin macrocycle based 1s(C)→π* and 1s(N)→π* transitions whose excitation energies are substantially unaffected upon fluorination. The obtained results complement those published by the same group about the occupied states of both molecules, thus providing the missing tile to get a thorough description of the halide decoration effects on the electronic structure of the tetrakis(phenyl)-porphyrin.

4.
J Phys Chem Lett ; 10(15): 4259-4265, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291119

RESUMO

The product selectivity in the electrochemical reduction of carbon dioxide depends on the structure of the copper electrode. Cube-shaped copper catalysts, enclosed by {100} terraces, {110} edges, and {111} corners, exhibit a size-dependent enhanced only selectivity toward C2 products and ethylene in particular. However, the underlying chemical reasons for such a behavior are not fully understood. This computational work toward ethylene formation investigates the carbon dioxide electroreduction mechanism over copper nanocubes. The analysis of the different pathways illustrates that the thermodynamic picture is limited in describing the formation of this product. Based on the activation barriers associated with the limiting C2 formation step, we identify a dual-facet mechanism occurring at the interface between the {100} terraces and {110} edges. These results highlight that the reactivity of shape-controlled nanocatalysts goes beyond the facet-selectivity observed in single crystals owing to the possible synergies arising at the intersection between the enclosing crystalline planes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA