Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Cancer ; 126(4): 615-627, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34811508

RESUMO

BACKGROUND: Metabolic stress resulting from nutrient deficiency is one of the hallmarks of a growing tumour. Here, we tested the hypothesis that metabolic stress induces breast cancer stem-like cell (BCSC) phenotype in triple-negative breast cancer (TNBC). METHODS: Flow cytometry for GD2 expression, mass spectrometry and Ingenuity Pathway Analysis for metabolomics, bioinformatics, in vitro tumorigenesis and in vivo models were used. RESULTS: Serum/glucose deprivation not only increased stress markers but also enhanced GD2+ BCSC phenotype and function in TNBC cells. Global metabolomics profiling identified upregulation of glutathione biosynthesis in GD2high cells, suggesting a role of glutamine in the BCSC phenotype. Cueing from the upregulation of the glutamine transporters in primary breast tumours, inhibition of glutamine uptake using small-molecule inhibitor V9302 reduced GD2+ cells by 70-80% and BCSC characteristics in TNBC cells. Mechanistic studies revealed inhibition of the mTOR pathway and induction of ferroptosis by V9302 in TNBC cells. Finally, inhibition of glutamine uptake significantly reduced in vivo tumour growth in a TNBC patient-derived xenograft model using NSG (non-obese diabetic/severe combined immunodeficiency with a complete null allele of the IL-2 receptor common gamma chain) mice. CONCLUSION: Here, we show metabolic stress results in GD2+ BCSC phenotype in TNBC and glutamine contributes to GD2+ phenotype, and targeting the glutamine transporters could complement conventional chemotherapy in TNBC.


Assuntos
Glicemia/análise , Gangliosídeos/metabolismo , Glutamina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Ferroptose/efeitos dos fármacos , Humanos , Metabolômica/métodos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fenótipo , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296381

RESUMO

Molecular imaging is the visual representation of biological processes that take place at the cellular or molecular level in living organisms. To date, molecular imaging plays an important role in the transition from conventional medical practice to precision medicine. Among all imaging modalities, positron emission tomography (PET) has great advantages in sensitivity and the ability to obtain absolute imaging quantification after corrections for photon attenuation and scattering. Due to the ability to label a host of unique molecules of biological interest, including endogenous, naturally occurring substrates and drug-like compounds, the role of PET has been well established in the field of molecular imaging. In this article, we provide an overview of the recent advances in the development of PET radiopharmaceuticals and their clinical applications in oncology.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos , Imagem Molecular/métodos
3.
Tomography ; 9(1): 375-386, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36828382

RESUMO

Relevant to co-clinical trials, the goal of this work was to assess repeatability, reproducibility, and bias of the apparent diffusion coefficient (ADC) for preclinical MRIs using standardized procedures for comparison to performance of clinical MRIs. A temperature-controlled phantom provided an absolute reference standard to measure spatial uniformity of these performance metrics. Seven institutions participated in the study, wherein diffusion-weighted imaging (DWI) data were acquired over multiple days on 10 preclinical scanners, from 3 vendors, at 6 field strengths. Centralized versus site-based analysis was compared to illustrate incremental variance due to processing workflow. At magnet isocenter, short-term (intra-exam) and long-term (multiday) repeatability were excellent at within-system coefficient of variance, wCV [±CI] = 0.73% [0.54%, 1.12%] and 1.26% [0.94%, 1.89%], respectively. The cross-system reproducibility coefficient, RDC [±CI] = 0.188 [0.129, 0.343] µm2/ms, corresponded to 17% [12%, 31%] relative to the reference standard. Absolute bias at isocenter was low (within 4%) for 8 of 10 systems, whereas two high-bias (>10%) scanners were primary contributors to the relatively high RDC. Significant additional variance (>2%) due to site-specific analysis was observed for 2 of 10 systems. Base-level technical bias, repeatability, reproducibility, and spatial uniformity patterns were consistent with human MRIs (scaled for bore size). Well-calibrated preclinical MRI systems are capable of highly repeatable and reproducible ADC measurements.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Benchmarking
4.
Tomography ; 9(2): 750-758, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37104131

RESUMO

Providing method descriptions that are more detailed than currently available in typical peer reviewed journals has been identified as an actionable area for improvement. In the biochemical and cell biology space, this need has been met through the creation of new journals focused on detailed protocols and materials sourcing. However, this format is not well suited for capturing instrument validation, detailed imaging protocols, and extensive statistical analysis. Furthermore, the need for additional information must be counterbalanced by the additional time burden placed upon researchers who may be already overtasked. To address these competing issues, this white paper describes protocol templates for positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) that can be leveraged by the broad community of quantitative imaging experts to write and self-publish protocols in protocols.io. Similar to the Structured Transparent Accessible Reproducible (STAR) or Journal of Visualized Experiments (JoVE) articles, authors are encouraged to publish peer reviewed papers and then to submit more detailed experimental protocols using this template to the online resource. Such protocols should be easy to use, readily accessible, readily searchable, considered open access, enable community feedback, editable, and citable by the author.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética
5.
Tomography ; 9(3): 995-1009, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37218941

RESUMO

Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute's (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases of cancer prevention and treatment. The use of oncology models, such as patient-derived tumor xenografts (PDX) and genetically engineered mouse models (GEMMs), has ushered in an era of co-clinical trials by which preclinical studies can inform clinical trials and protocols, thus bridging the translational divide in cancer research. Similarly, preclinical imaging fills a translational gap as an enabling technology for translational imaging research. Unlike clinical imaging, where equipment manufacturers strive to meet standards in practice at clinical sites, standards are neither fully developed nor implemented in preclinical imaging. This fundamentally limits the collection and reporting of metadata to qualify preclinical imaging studies, thereby hindering open science and impacting the reproducibility of co-clinical imaging research. To begin to address these issues, the NCI co-clinical imaging research program (CIRP) conducted a survey to identify metadata requirements for reproducible quantitative co-clinical imaging. The enclosed consensus-based report summarizes co-clinical imaging metadata information (CIMI) to support quantitative co-clinical imaging research with broad implications for capturing co-clinical data, enabling interoperability and data sharing, as well as potentially leading to updates to the preclinical Digital Imaging and Communications in Medicine (DICOM) standard.


Assuntos
Metadados , Neoplasias , Animais , Camundongos , Humanos , Reprodutibilidade dos Testes , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem , Padrões de Referência
6.
Elife ; 52016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410477

RESUMO

ER-targeted therapeutics provide valuable treatment options for patients with ER+ breast cancer, however, current relapse and mortality rates emphasize the need for improved therapeutic strategies. The recent discovery of prevalent ESR1 mutations in relapsed tumors underscores a sustained reliance of advanced tumors on ERα signaling, and provides a strong rationale for continued targeting of ERα. Here we describe GDC-0810, a novel, non-steroidal, orally bioavailable selective ER downregulator (SERD), which was identified by prospectively optimizing ERα degradation, antagonism and pharmacokinetic properties. GDC-0810 induces a distinct ERα conformation, relative to that induced by currently approved therapeutics, suggesting a unique mechanism of action. GDC-0810 has robust in vitro and in vivo activity against a variety of human breast cancer cell lines and patient derived xenografts, including a tamoxifen-resistant model and those that harbor ERα mutations. GDC-0810 is currently being evaluated in Phase II clinical studies in women with ER+ breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Cinamatos/administração & dosagem , Indazóis/administração & dosagem , Receptores de Estrogênio/administração & dosagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Estudos Prospectivos , Ratos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA