Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(11): 6042-6046, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111690

RESUMO

Induction of longstanding immunologic tolerance is essential for survival of transplanted organs and tissues. Despite recent advances in immunosuppression protocols, allograft damage inflicted by antibody specific for donor organs continues to represent a major obstacle to graft survival. Here we report that activation of regulatory CD8 T cells (CD8 Treg) that recognize the Qa-1 class Ib major histocompatibility complex (MHC), a mouse homolog of human leukocyte antigen-E (HLA-E), inhibits antibody-mediated immune rejection of heart allografts. We analyzed this response using a mouse model that harbors a point mutation in the class Ib MHC molecule Qa-1, which disrupts Qa-1 binding to the T cell receptor (TCR)-CD8 complex and impairs the CD8 Treg response. Despite administration of cytotoxic T lymphocyte antigen 4 (CTLA-4) immunoglobulin (Ig), Qa-1 mutant mice developed robust donor-specific antibody responses and accelerated heart graft rejection. We show that these allo-antibody responses reflect diminished Qa-1-restricted CD8 Treg-mediated suppression of host follicular helper T cell-dependent antibody production. These findings underscore the critical contribution of this Qa-1/HLA-E-dependent regulatory pathway to maintenance of transplanted organs and suggest therapeutic approaches to ameliorate allograft rejection.


Assuntos
Rejeição de Enxerto/imunologia , Transplante de Coração/efeitos adversos , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/imunologia , Aloenxertos/imunologia , Aloenxertos/metabolismo , Animais , Modelos Animais de Doenças , Rejeição de Enxerto/sangue , Rejeição de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Tolerância Imunológica , Isoanticorpos/imunologia , Isoanticorpos/metabolismo , Isoantígenos/imunologia , Isoantígenos/metabolismo , Camundongos , Miocárdio/imunologia , Miocárdio/metabolismo , Mutação Puntual , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Transplante Homólogo/efeitos adversos
2.
Curr Opin Organ Transplant ; 23(1): 1-7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29210727

RESUMO

PURPOSE OF REVIEW: The main objective of this review is to briefly highlight how we gradually came to understand regulatory T cells (Tregs) and forkhead box p3 (FoxP3) biology, including their function and regulation. We will also discuss how this knowledge is being translated into the clinical setting and the significant challenges that need to be overcome. RECENT FINDINGS: CD4FoxP3 Tregs are key players in immune regulation. Their deficiency and dysfunction have been implicated in the pathogenesis of many autoimmune diseases. This has led towards extensive work across the years to figure out the biology and suppressive mechanisms of these cells. Furthermore, Tregs' ability to suppress immune responses makes the idea of their utilization in adoptive immunotherapy appealing. Work has been underway to establish ideal methods to integrate Tregs into the management of autoimmune diseases and alloimmunity, either by treatment with IL-2 or infusion of ex-vivo expanded Tregs. Despite Tregs' scarcity and increased tendency for Activation-induced cell death, many groups have developed effective methods to expand them ex vivo. SUMMARY: Although clinical trials are ongoing to test the safety and efficacy of regulatory cells in transplant recipients, it is vital to continue exploring the cellular and molecular mechanisms that control their stability and homeostasis.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Fatores Imunológicos/imunologia , Imunoterapia , Linfócitos T Reguladores/imunologia , Animais , Humanos
3.
Sci Transl Med ; 12(569)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177180

RESUMO

Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG-modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.


Assuntos
Interleucina-2 , Linfócitos T Reguladores , Animais , Camundongos , Nanogéis , Receptores de Antígenos de Linfócitos T , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA