Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Immunol ; 204(8): 2169-2176, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32161099

RESUMO

Currently 247 million people are living with chronic hepatitis B virus infection (CHB), and the development of novel curative treatments is urgently needed. Immunotherapy is an attractive approach to treat CHB, yet therapeutic approaches to augment the endogenous hepatitis B virus (HBV)-specific T cell response in CHB patients have demonstrated little success. In this study, we show that strain 68-1 rhesus macaque (RM) CMV vaccine vectors expressing HBV Ags engender HBV-specific CD8+ T cells unconventionally restricted by MHC class II and the nonclassical MHC-E molecule in RM. Surface staining of human donor and RM primary hepatocytes (PH) ex vivo revealed the majority of PH expressed MHC-E but not MHC class II. HBV-specific, MHC-E-restricted CD8+ T cells from RM vaccinated with RM CMV vaccine vectors expressing HBV Ags recognized HBV-infected PH from both human donor and RM. These results provide proof-of-concept that MHC-E-restricted CD8+ T cells could be harnessed for the treatment of CHB, either through therapeutic vaccination or adoptive immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatócitos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Hepatite B Crônica/virologia , Hepatócitos/virologia , Macaca mulatta
2.
PLoS Pathog ; 12(12): e1006072, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977791

RESUMO

Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Epitopos Imunodominantes/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/metabolismo , Cromatografia Líquida , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Espectrometria de Massas , Camundongos , Muromegalovirus/imunologia , Mutagênese Sítio-Dirigida , Peptídeos , Vacinas Sintéticas/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
3.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728394

RESUMO

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Antígenos HLA-E , Animais , Humanos , Masculino , Fosfatase Ácida , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Macaca mulatta , Mesotelina
4.
PLoS Pathog ; 7(11): e1002332, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072961

RESUMO

Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV), indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV) from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.


Assuntos
Antígenos CD/metabolismo , Citomegalovirus/fisiologia , Internalização do Vírus , Liberação de Vírus , Antígenos CD/genética , Linhagem Celular , Ebolavirus/fisiologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , HIV-1/fisiologia , Herpesvirus Humano 8/fisiologia , Humanos , Monócitos/virologia , Interferência de RNA , RNA Interferente Pequeno
5.
PLoS Pathog ; 6(5): e1000913, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20485522

RESUMO

The interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposi's sarcoma-associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as "tetherin". However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells. Since the anti-viral function of BST-2 was discovered, there has been an explosion of research into several aspects of this intriguing interplay between host and virus. This review focuses on recent work addressing the molecular mechanisms involved in BST-2 restriction of viral egress and the species-specific countermeasures employed by various viruses.


Assuntos
Antígenos CD/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Glicoproteínas de Membrana/metabolismo , Antígenos CD/genética , Proteínas Ligadas por GPI , Humanos , Glicoproteínas de Membrana/genética , Vírion/metabolismo , Viroses/metabolismo , Viroses/virologia
6.
J Virol ; 83(19): 9672-81, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19605472

RESUMO

K3/MIR1 and K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.


Assuntos
Antígenos CD/biossíntese , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/biossíntese , Glicoproteínas de Membrana/biossíntese , Proteínas Virais/biossíntese , Biotinilação , Células Cultivadas , Células Endoteliais/virologia , Proteínas Ligadas por GPI , Células HeLa , Humanos , Microcirculação , Modelos Biológicos , Reação em Cadeia da Polimerase , Complexo de Endopeptidases do Proteassoma/metabolismo
7.
J Virol ; 82(19): 9615-28, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667499

RESUMO

Vascular endothelial cadherin (VE-cadherin) connects neighboring endothelial cells (ECs) via interendothelial junctions and regulates EC proliferation and adhesion during vasculogenesis and angiogenesis. The cytoplasmic domain of VE-cadherin recruits alpha- and beta-catenins and gamma-catenin, which interact with the actin cytoskeleton, thus modulating cell morphology. Dysregulation of the adherens junction/cytoskeletal axis is a hallmark of invasive tumors. We now demonstrate that the transmembrane ubiquitin ligase K5/MIR-2 of Kaposi's sarcoma-associated herpesvirus targets VE-cadherin for ubiquitin-mediated destruction, thus disturbing EC adhesion. In contrast, N-cadherin levels in K5-expressing cells were increased compared to those in control cells. Steady-state levels of alpha- and beta-catenins and gamma-catenin in K5-expressing ECs were drastically reduced due to proteasomal destruction. Moreover, the actin cytoskeleton was rearranged, resulting in the dysregulation of EC barrier function as measured by electric cell-substrate impedance sensing. Our data represent the first example of a viral protein targeting adherens junction proteins and suggest that K5 contributes to EC proliferation, vascular leakage, and the reprogramming of the EC proteome during Kaposi's sarcoma tumorigenesis.


Assuntos
Junções Aderentes/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/metabolismo , Actinas/metabolismo , Biotinilação , Cateninas/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Citoesqueleto/metabolismo , Impedância Elétrica , Humanos , Pele/metabolismo , Ubiquitina/metabolismo
8.
Virus Res ; 88(1-2): 55-69, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12297327

RESUMO

Many viruses have developed mechanisms to escape the cellular immune response by inhibiting antigen presentation from major histocompatibility complex (MHC) molecules. Most of these immune escape mechanisms are highly host adapted and specific to a given virus species or family. Recent observations however, suggest that a conserved family of viral proteins is used by both gamma-2 herpesviruses and by poxviruses to downregulate MHC class I. In addition, other cell surface molecules involved in immune recognition by T cells and NK cells are also downregulated. Two open reading frames (ORFs), K3 and K5, of Kaposi's sarcoma associated virus (KSHV) and one ORFs, K3, of murine gamma herpesvirus 68 (MHV 68) inhibit surface expression of MHC I molecules. In cells transfected with KSHV-K3 and KSHV-K5, MHC I is rapidly endocytosed and degraded in lysosomes whereas in MHV 68-K3 transfected cells, MHC I is targeted for proteasomal degradation. The K3 and K5 genes display a characteristic conserved domain structure of an amino-terminal plant homeo domain/leukemia associated protein-zinc finger domain followed by two carboxyterminal transmembrane domains. Related proteins are not only found in other gamma-2 herpesviruses, but also in several poxviruses. Moreover, recent data suggest that the K3-related protein of myxoma virus also downregulates MHC I. The presence of similar genes in eukaryotic genomes further indicates that the viral ORFs were originally derived from host genes of as yet unknown function. The molecular mechanism of MHC I downregulation by this novel gene family is only poorly understood at present. However, several lines of evidence suggest that they might function as ubiquitin ligases that regulate the intracellular transport of transmembrane proteins through ubiquitination.


Assuntos
Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/imunologia , Infecções por Poxviridae/imunologia , Poxviridae/patogenicidade , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Dados de Sequência Molecular , Coelhos , Ubiquitina/metabolismo , Proteínas Virais/química , Dedos de Zinco
9.
PLoS One ; 5(12): e15132, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21151997

RESUMO

Membrane-associated RING-CH (MARCH) proteins represent a family of transmembrane ubiquitin ligases modulating intracellular trafficking and turnover of transmembrane protein targets. While homologous proteins encoded by gamma-2 herpesviruses and leporipoxviruses have been studied extensively, limited information is available regarding the physiological targets of cellular MARCH proteins. To identify host cell proteins targeted by the human MARCH-VIII ubiquitin ligase we used stable isotope labeling of amino-acids in cell culture (SILAC) to monitor MARCH-dependent changes in the membrane proteomes of human fibroblasts. Unexpectedly, we observed that MARCH-VIII reduced the surface expression of Bap31, a chaperone that predominantly resides in the endoplasmic reticulum (ER). We demonstrate that Bap31 associates with the transmembrane domains of several MARCH proteins and controls intracellular transport of MARCH proteins. In addition, we observed that MARCH-VIII reduced the surface expression of the hyaluronic acid-receptor CD44 and both MARCH-VIII and MARCH-IV sequestered the tetraspanin CD81 in endo-lysosomal vesicles. Moreover, gene knockdown of MARCH-IV increased surface levels of endogenous CD81 suggesting a constitutive involvement of this family of ubiquitin ligases in the turnover of tetraspanins. Our data thus suggest a role of MARCH-VIII and MARCH-IV in the regulated turnover of CD81 and CD44, two ubiquitously expressed, multifunctional proteins.


Assuntos
Antígenos CD/metabolismo , Receptores de Hialuronatos/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Ácido Hialurônico/química , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Tetraspanina 28 , Tetraspanina 29
10.
Blood ; 108(6): 1932-40, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16601245

RESUMO

The transmembrane ubiquitin ligase K5/MIR2 of Kaposi sarcoma herpesvirus (KSHV) mediates internalization and lysosomal degradation of glycoproteins involved in antigen presentation and co-stimulation. In endothelial cells (ECs), K5 additionally reduced expression of CD31/platelet-endothelial cell adhesion molecule (PECAM), an adhesion molecule regulating cell-cell interactions of ECs, platelets, monocytes, and T cells. K5 also reduced EC migration, a CD31-dependent process. Unlike other K5 substrates, both newly synthesized and pre-existing CD31 molecules were targeted by K5. K5 was transported to the cell surface and ubiquitinated pre-existing CD31, resulting in endocytosis and lysosomal degradation. In the endoplasmic reticulum, newly synthesized CD31 was degraded by proteasomes, which required binding of phosphofurin acidic cluster sorting protein-2 (PACS-2) to acidic residues in the carboxyterminal tail of K5. Thus, CD31, a novel target of K5, is efficiently removed from ECs by a dual degradation mechanism that is regulated by the subcellular sorting of the ubiquitin ligase. K5-mediated degradation of CD31 is likely to affect EC function in KS tumors.


Assuntos
Células Endoteliais/imunologia , Células Endoteliais/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/patogenicidade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Células Cultivadas , Regulação para Baixo , Células Endoteliais/citologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Sarcoma de Kaposi/enzimologia , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/virologia , Especificidade por Substrato , Proteínas de Transporte Vesicular , Proteínas Virais/metabolismo
11.
J Virol ; 78(3): 1109-20, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14722266

RESUMO

Poxviruses and gamma-2 herpesviruses share the K3 family of viral immune evasion proteins that inhibit the surface expression of glycoproteins such as major histocompatibility complex class I (MHC-I), B7.2, ICAM-1, and CD95(Fas). K3 family proteins contain an amino-terminal PHD/LAP or RING-CH domain followed by two transmembrane domains. To examine whether human homologues are functionally related to the viral immunoevasins, we studied seven membrane-associated RING-CH (MARCH) proteins. All MARCH proteins located to subcellular membranes, and several MARCH proteins reduced surface levels of known substrates of the viral K3 family. Two closely related proteins, MARCH-IV and MARCH-IX, reduced surface expression of MHC-I molecules. In the presence of MARCH-IV or MARCH-IX, MHC-I was ubiquitinated and rapidly internalized by endocytosis, whereas MHC-I molecules lacking lysines in their cytoplasmic tail were resistant to downregulation. The amino-terminal regions containing the RING-CH domain of several MARCH proteins examined catalyzed multiubiquitin formation in vitro, suggesting that MARCH proteins are ubiquitin ligases. The functional similarity of the MARCH family and the K3 family suggests that the viral immune evasion proteins were derived from MARCH proteins, a novel family of transmembrane ubiquitin ligases that seems to target glycoproteins for lysosomal destruction via ubiquitination of the cytoplasmic tail.


Assuntos
Regulação para Baixo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Células HeLa , Humanos , Proteínas Imediatamente Precoces/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transfecção , Proteínas Virais/genética
12.
J Virol ; 77(2): 1427-40, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12502858

RESUMO

The genomes of several poxviruses contain open reading frames with homology to the K3 and K5 genes of Kaposi's sarcoma-associated herpesvirus (KSHV) and the K3 gene of murine gammaherpesvirus 68, which target major histocompatibility complex class I (MHC-I) as well as costimulatory molecules for proteasomal or lysosomal degradation. The homologous gene product of myxomavirus (MV), M153R, was recently shown to reduce the cell surface expression of MHC-I. In addition, normal MHC-I surface expression was observed in cells infected with MV lacking M153R (J. L. Guerin, J. Gelfi, S. Boullier, M. Delverdier, F. A. Bellanger, S. Bertagnoli, I. Drexler, G. Sutter, and F. Messud-Petit, J. Virol. 76:2912-2923, 2002). Here, we show that M153R also downregulates the T-cell coreceptor CD4 and we study the molecular mechanism by which M153R achieves the downregulation of CD4 and MHC-I. Upon M153R expression, CD4 was rapidly internalized and degraded in lysosomes, whereas deletion of M153R from the genome of MV restored CD4 expression. The downregulation of both CD4 and MHC-I was dependent on the presence of lysine residues in their cytoplasmic tails. Increased ubiquitination of CD4 was observed upon coexpression with M153R in the presence of inhibitors of lysosomal acidification. Surface expression of CD4 was restored upon overexpression of Hrs, a ubiquitin interaction motif-containing protein that sorts ubiquitinated proteins into endosomes. Moreover, the purified PHD/LAP zinc finger of M153R catalyzed the formation of multiubiquitin adducts in vitro. Our data suggest that M153R acts as a membrane-bound ubiquitin ligase that conjugates ubiquitin to the cytoplasmic domain of substrate glycoproteins, with ubiquitin serving as a lysosomal targeting signal. Since a similar mechanism was recently proposed for KSHV K5, it seems that members of the unrelated families of gamma-2 herpesviruses and poxviruses share a common immune evasion mechanism that targets host cell immune receptors.


Assuntos
Antígenos CD4/metabolismo , Endocitose , Ligases/metabolismo , Poxviridae/enzimologia , Ubiquitina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , DNA Viral , Regulação para Baixo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA