Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967089

RESUMO

The COVID-19 pandemic has highlighted the need for rapid and reliable diagnostics that are accessible in resource-limited settings. To address this pressing issue, we have developed a rapid, portable, and electricity-free method for extracting nucleic acids from respiratory swabs (i.e. nasal, nasopharyngeal and buccal swabs), successfully demonstrating its effectiveness for the detection of SARS-CoV-2 in residual clinical specimens. Unlike traditional approaches, our solution eliminates the need for micropipettes or electrical equipment, making it user-friendly and requiring little to no training. Our method builds upon the principles of magnetic bead extraction and revolves around a low-cost plastic magnetic lid, called SmartLid, in combination with a simple disposable kit containing all required reagents conveniently prealiquoted. Here, we clinically validated the SmartLid sample preparation method in comparison to the gold standard QIAamp Viral RNA Mini Kit from QIAGEN, using 406 clinical isolates, including 161 SARS-CoV-2 positives, using the SARS-CoV-2 RT-qPCR assays developed by the US Centers for Disease Control and Prevention (CDC). The SmartLid method showed an overall sensitivity of 95.03% (95% CI: 90.44-97.83%) and a specificity of 99.59% (95% CI: 97.76-99.99%), with a positive agreement of 97.79% (95% CI: 95.84-98.98%) when compared to QIAGEN's column-based extraction method. There are clear benefits to using the SmartLid sample preparation kit: it enables swift extraction of viral nucleic acids, taking less than 5 min, without sacrificing significant accuracy when compared to more expensive and time-consuming alternatives currently available on the market. Moreover, its simplicity makes it particularly well-suited for the point-of-care where rapid results and portability are crucial. By providing an efficient and accessible means of nucleic acid extraction, our approach aims to introduce a step-change in diagnostic capabilities for resource-limited settings.

2.
Cancers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001698

RESUMO

Cancer remains a leading cause of death worldwide, despite many advances in diagnosis and treatment. Precision medicine has been a key area of focus, with research providing insights and progress in helping to lower cancer mortality through better patient stratification for therapies and more precise diagnostic techniques. However, unequal access to cancer care is still a global concern, with many patients having limited access to diagnostic tests and treatment regimens. Noninvasive liquid biopsy (LB) technology can determine tumour-specific molecular alterations in peripheral samples. This allows clinicians to infer knowledge at a DNA or cellular level, which can be used to screen individuals with high cancer risk, personalize treatments, monitor treatment response, and detect metastasis early. As scientific understanding of cancer pathology increases, LB technologies that utilize circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) have evolved over the course of research. These technologies incorporate tumour-specific markers into molecular testing platforms. For clinical translation and maximum patient benefit at a wider scale, the accuracy, accessibility, and affordability of LB tests need to be prioritized and compared with gold standard methodologies in current use. In this review, we highlight the range of technologies in LB diagnostics and discuss the future prospects of LB through the anticipated evolution of current technologies and the integration of emerging and novel ones. This could potentially allow a more cost-effective model of cancer care to be widely adopted.

3.
Sci Rep ; 12(1): 8750, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610285

RESUMO

Cervical cancer affects over half a million people worldwide each year, the majority of whom are in resource-limited settings where cytology screening is not available. As persistent human papilloma virus (HPV) infections are a key causative factor, detection of HPV strains now complements cytology where screening services exist. This work demonstrates the efficacy of a handheld Lab-on-Chip (LoC) device, with an external sample extraction process, in detecting cervical cancer from biopsy samples. The device is based on Ion-Sensitive Field-Effect Transistor (ISFET) sensors used in combination with loop-mediated isothermal amplification (LAMP) assays, to amplify HPV DNA and human telomerase reverse transcriptase (hTERT) mRNA. These markers were selected because of their high levels of expression in cervical cancer cells, but low to nil expression in normal cervical tissue. The achieved analytical sensitivity for the molecular targets resolved down to a single copy per reaction for the mRNA markers, achieving a limit of detection of 102 for hTERT. In the tissue samples, HPV-16 DNA was present in 4/5 malignant and 2/5 benign tissues, with HPV-18 DNA being present in 1/5 malignant and 1/5 benign tissues. hTERT mRNA was detected in all malignant and no benign tissues, with the demonstrated pilot data to indicate the potential for using the LoC in cervical cancer screening in resource-limited settings on a large scale.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Telomerase , Neoplasias do Colo do Útero , Alphapapillomavirus/genética , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer , Feminino , Humanos , Papillomaviridae/genética , Papillomaviridae/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Telomerase/genética , Telomerase/metabolismo , Neoplasias do Colo do Útero/patologia
4.
IEEE Trans Biomed Circuits Syst ; 15(3): 380-389, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34214044

RESUMO

ESR1 mutations are important biomarkers in metastatic breast cancer. Specifically, p.E380Q and p.Y537S mutations arise in response to hormonal therapies given to patients with hormone receptor positive (HR+) breast cancer (BC). This paper demonstrates the efficacy of an ISFET based CMOS integrated Lab-on-Chip (LoC) system, coupled with variant-specific isothermal amplification chemistries, for detection and discrimination of wild type (WT) from mutant (MT) copies of the ESR1 gene. Hormonal resistant cancers often lead to increased chances of metastatic disease which leads to high mortality rates, especially in low-income regions and areas with low healthcare coverage. Design and optimization of bespoke primers was carried out and tested on a qPCR instrument and then benchmarked versus the LoC platform. Assays for detection of p.Y537S and p.E380Q were developed and tested on the LoC platform, achieving amplification in under 25 minutes and sensitivity of down to 1000 copies of DNA per reaction for both target assays. The LoC system hereby presented, is cheaper and smaller than other standard industry equivalent technologies such as qPCR and sequencing. The LoC platform proposed, has the potential to be used at a breast cancer point-of-care testing setting, offering mutational tracking of circulating tumour DNA in liquid biopsies to assist patient stratification and metastatic monitoring.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA