Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(22): 36769-36783, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809080

RESUMO

Recovery of optical phases using direct intensity detection methods is an ill-posed problem and some prior information is required to regularize it. In the case of multi-mode fibers, the known structure of eigenmodes is used to recover optical field and find mode decomposition by measuring intensity distribution. Here we demonstrate numerically and experimentally a mode decomposition technique that outperforms the fastest previously published method in terms of the number of modes while showing the same decomposition speed. This technique improves signal-to-noise ratio by 10 dB for a 3-mode fiber and by 7.5 dB for a 5-mode fiber.

2.
Opt Express ; 28(14): 20587-20597, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680115

RESUMO

Control of the properties of speckle patterns produced by mutual interference of light waves is important for various applications of multimode optical fibers. It has been shown previously that a high signal-to-noise ratio in a multimode fiber can be achieved by preferential excitation of lower order spatial eigenmodes in optical fiber communication. Here we demonstrate that signal spatial coherence can be tailored by changing relative contributions of the lower and higher order multimode fiber eigenmodes for the research of speckle formation and spatial coherence. It is found that higher order spatial eigenmodes are more conducive to the final speckle formation. The minimum speckle contrast occurs in the lower order spatial eigenmodes dominated regime. This work paves the way for control and manipulation of the spatial coherence of light in a multimode fiber varying from partially coherent or totally incoherent light.

3.
Sensors (Basel) ; 19(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574905

RESUMO

Surface plasmon resonance-based fiber-optic sensors are of increasing interest in modern sensory research, especially for chemical and biomedical applications. Special attention deserves to be given to sensors based on tilted fiber Bragg gratings, due to their unique spectral properties and potentially high sensitivity and resolution. However, the principal task is to determine the plasmon resonance wavelength based on the spectral characteristics of the sensor and, most importantly, to measure changes in environmental parameters with high resolution, while the existing indirect methods are only useable in a narrow spectral range. In this paper, we present a new approach to solving this problem, based on the original method of determining the plasmon resonance spectral position in the automatic mode by precisely calculating the constriction location on the transmission spectrum of the sensor. We also present an experimental comparison of various data processing methods in both a narrow and a wide range of the refractive indexes. Application of our method resulted in achieving a resolution of up to 3 × 10-6 in terms of the refractive index.

4.
Nat Commun ; 11(1): 5507, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139691

RESUMO

Retrieval of the optical phase information from measurement of intensity is of a high interest because this would facilitate simple and cost-efficient techniques and devices. In scientific and industrial applications that exploit multi-mode fibers, a prior knowledge of spatial mode structure of the fiber, in principle, makes it possible to recover phases using measured intensity distribution. However, current mode decomposition algorithms based on the analysis of the intensity distribution at the output of a few-mode fiber, such as optimization methods or neural networks, still have high computational costs and high latency that is a serious impediment for applications, such as telecommunications. Speed of signal processing is one of the key challenges in this approach. We present a high-performance mode decomposition algorithm with a processing time of tens of microseconds. The proposed mathematical algorithm that does not use any machine learning techniques, is several orders of magnitude faster than the state-of-the-art deep-learning-based methods. We anticipate that our results can stimulate further research on algorithms beyond popular machine learning methods and they can lead to the development of low-cost phase retrieval receivers for various applications of few-mode fibers ranging from imaging to telecommunications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA