Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(40): 13711-13718, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581576

RESUMO

Nanochannels have advantage in sensitive analyses due to the confinement effects on ionic signal in nano- or sub-nanometric confines but could realize further gains by optimizing signal mechanism. Making target recognitions on the outer surface of nanochannels has been verified to improve target recognitions and signal conversions by maximizing surfaces accessible to targets and ions, but until recently, the signal mechanism has been still unclear. Using electroneutral peptide nucleic acid (PNA) and negative-charged DNA, we verified a dominant space charge effect on an ionic signal on the outer surface of nanochannels. A typical exponential increase of the ionic signal with the charge density on the outer surface has been demonstrated through the PNA-PNA, PNA-DNA, DNA-DNA hybrid, DNA cleavage, and hybridization chain reaction. These results challenge the essential role of steric hindrance on the ionic signal and describe a new ion passageway surrounded and accelerated by the stern layer of charged species on the nanochannel outer surface.


Assuntos
Ácidos Nucleicos Peptídicos , DNA , Íons , Hibridização de Ácido Nucleico
2.
Analyst ; 146(16): 5089-5094, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34297030

RESUMO

Nanopores attached to charged species realize the artificial regulation of ion transport by the electrostatic effect in nanoconfines, produce a sensitive ion current signal and play a critical role in nanopore-based analyses. However, until now, the contribution of the charged species at the outer surface, an inherent component of nanopores, to the ion current signal has not yet been fully investigated. Here, we theoretically investigate the contribution of the charged species at the outer surface to the ion current signal of a conical nanopore. The results indicate that when the electrostatic effect at the tip of the conical nanopore is strengthened, the contribution from the charged species at the outer surface to the ionic current signal becomes stronger or even predominant compared with that of the inner walls. This effect can be further enhanced using nanopore arrays with small openings and low pore density in a low concentration electrolyte. This work focuses on the working mechanism of nanopores with a high-efficient signal conversion and promotes the performance of nanopores with a regional distribution of charged probes and targets.


Assuntos
Nanoporos , Eletrólitos , Transporte de Íons , Modelos Teóricos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA