Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Yeast ; 37(3): 269-279, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31960994

RESUMO

In Saccharomyces cerevisiae under conditions of nutrient stress, meiosis precedes the formation of spores. Although the molecular mechanisms that regulate meiosis, such as meiotic recombination and nuclear divisions, have been extensively studied, the metabolic factors that determine the efficiency of sporulation are less understood. Here, we have directly assessed the relationship between metabolic stores and sporulation in S. cerevisiae by genetically disrupting the synthetic pathways for the carbohydrate stores, glycogen (gsy1/2Δ cells), trehalose (tps1Δ cells), or both (gsy1/2Δ and tps1Δ cells). We show that storage carbohydrate-deficient strains are highly inefficient in sporulation. Although glycogen and trehalose stores can partially compensate for each other, they have differential effects on sporulation rate and spore number. Interestingly, deletion of the G1 cyclin, CLN3, which resulted in an increase in cell size, mitochondria and lipid stores, partially rescued meiosis progression and spore ascus formation but not spore number in storage carbohydrate-deficient strains. Sporulation efficiency in the carbohydrate-deficient strain exhibited a greater dependency on mitochondrial activity and lipid stores than wild-type yeast. Taken together, our results provide new insights into the complex crosstalk between metabolic factors that support gametogenesis.


Assuntos
Carboidratos/química , Lipídeos/química , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/fisiologia , Ciclinas/genética , Ciclinas/metabolismo , Replicação do DNA , Regulação Fúngica da Expressão Gênica , Meiose , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
2.
J Cell Biol ; 221(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694336

RESUMO

Cellular quiescence is a nonproliferative state required for cell survival under stress and during development. In most quiescent cells, proliferation is stopped in a reversible state of low Cdk1 kinase activity; in many organisms, however, quiescent states with high-Cdk1 activity can also be established through still uncharacterized stress or developmental mechanisms. Here, we used a microfluidics approach coupled to phenotypic classification by machine learning to identify stress pathways associated with starvation-triggered high-Cdk1 quiescent states in Saccharomyces cerevisiae. We found that low- and high-Cdk1 quiescent states shared a core of stress-associated processes, such as autophagy, protein aggregation, and mitochondrial up-regulation, but differed in the nuclear accumulation of the stress transcription factors Xbp1, Gln3, and Sfp1. The decision between low- or high-Cdk1 quiescence was controlled by cell cycle-independent accumulation of Xbp1, which acted as a time-delayed integrator of the duration of stress stimuli. Our results show how cell cycle-independent stress-activated factors promote cellular quiescence outside G1/G0.


Assuntos
Ciclo Celular , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico , Núcleo Celular/metabolismo , Proliferação de Células , Microfluídica , Fatores de Transcrição/metabolismo
3.
Cell Rep ; 33(9): 108446, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264609

RESUMO

Isogenic cells manifest distinct cellular fates for a single stress; however, the nongenetic mechanisms driving such fates remain poorly understood. Here, we implement a robust multi-channel live-cell imaging approach to uncover noncanonical factors governing cell fate. We show that in response to acute glucose removal (AGR), budding yeast undergoes distinct fates, becoming either quiescent or senescent. Senescent cells fail to resume mitotic cycles following glucose replenishment but remain responsive to nutrient stimuli. Whereas quiescent cells manifest starvation-induced adaptation, senescent cells display perturbed endomembrane trafficking and defective nucleus-vacuole junction (NVJ) expansion. Surprisingly, senescence occurs even in the absence of lipid droplets. Importantly, we identify the nutrient-sensing kinase Rim15 as a key biomarker predicting cell fates before AGR stress. We propose that isogenic yeast challenged with acute nutrient shortage contains determinants influencing post-stress fate and demonstrate that specific nutrient signaling, stress response, trafficking, and inter-organelle biomarkers are early indicators for long-term fate outcomes.


Assuntos
Diferenciação Celular/imunologia , Senescência Celular/imunologia , Estresse Fisiológico/imunologia , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA