Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640778

RESUMO

We address non-contact detection of defects in the railway rails under their dynamic loading and propose to combine digital image correlation (DIC) and finite element modeling (FEM). We show that accurate model of defect-free rail operating at the same loading conditions as the inspected one provides a reliable reference for experimental data. In this study, we tested the rail samples with artificial and fatigue defects under cyclic loading, calculated displacement and stress distributions at different locations of the cracks via DIC and validated the obtained results by FEM. The proposed DIC-FEM approach demonstrates high sensitivity to fatigue cracks and can be effectively used for remote control of rails as well as for non-destructive testing of various other objects operating under dynamic loads.

2.
Biofabrication ; 10(3): 034104, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29848793

RESUMO

Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering.


Assuntos
Técnicas de Cultura de Células/instrumentação , Campos Magnéticos , Engenharia Tecidual/instrumentação , Animais , Condrócitos/citologia , Simulação por Computador , Desenho de Equipamento , Esferoides Celulares/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA