Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 30(7): 1594-1611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432714

RESUMO

Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.


Assuntos
Aedes , Aedes/genética , Animais , Genômica , Metagenômica , Mosquitos Vetores/genética , RNA Interferente Pequeno/genética
2.
Viruses ; 13(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806250

RESUMO

The Asian tiger mosquito Aedes albopictus is contributing to the (re)-emergence of Chikungunya virus (CHIKV). To gain insights into the molecular underpinning of viral persistence, which renders a mosquito a life-long vector, we coupled small RNA and whole genome sequencing approaches on carcasses and ovaries of mosquitoes sampled 14 days post CHIKV infection and investigated the profile of small RNAs and the presence of vDNA fragments. Since Aedes genomes harbor nonretroviral Endogenous Viral Elements (nrEVEs) which confers tolerance to cognate viral infections in ovaries, we also tested whether nrEVEs are formed after CHIKV infection. We show that while small interfering (si)RNAs are evenly distributed along the full viral genome, PIWI-interacting (pi)RNAs mostly arise from a ~1000 bp window, from which a unique vDNA fragment is identified. CHIKV infection does not result in the formation of new nrEVEs, but piRNAs derived from existing nrEVEs correlate with differential expression of an endogenous transcript. These results demonstrate that all three RNAi pathways contribute to the homeostasis during the late stage of CHIKV infection, but in different ways, ranging from directly targeting the viral sequence to regulating the expression of mosquito transcripts and expand the role of nrEVEs beyond immunity against cognate viruses.


Assuntos
Aedes/virologia , Vírus Chikungunya/genética , DNA Viral/genética , Genoma Viral , Pequeno RNA não Traduzido/genética , Integração Viral/genética , Animais , Febre de Chikungunya/imunologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Feminino , Mosquitos Vetores/virologia , Ovário/virologia , Sequenciamento Completo do Genoma
3.
Commun Biol ; 3(1): 326, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581265

RESUMO

The mosquito Aedes albopictus is one of the most dangerous invasive species. Its worldwide spread has created health concerns as it is a major vector of arboviruses of public health significance such as chikungunya (CHIKV). Dynamics of different genetic backgrounds and admixture events may have impacted competence for CHIKV in adventive populations. Using microsatellites, we infer the genetic structure of populations across the expansion areas that we then associate with their competence for different CHIKV genotypes. Here we show that the demographic history of Ae. albopictus populations is a consequence of rapid complex patterns of historical lineage diversification and divergence that influenced their competence for CHIKV. The history of adventive populations is associated with CHIKV genotypes in a genotype-by-genotype interaction that impacts their vector competence. Thus, knowledge of the demographic history and vector competence of invasive mosquitoes is pivotal for assessing the risk of arbovirus outbreaks in newly colonized areas.


Assuntos
Aedes/genética , Aedes/virologia , Vírus Chikungunya , Genética Populacional , Animais , Sudeste Asiático , Febre de Chikungunya/transmissão , Feminino , Variação Genética , Interações Hospedeiro-Patógeno , Espécies Introduzidas , Repetições de Microssatélites , Mosquitos Vetores , América do Norte , América do Sul
4.
PLoS Negl Trop Dis ; 14(6): e0008350, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569337

RESUMO

BACKGROUND: The arboviral vector Aedes albopictus became established on all continents except Antarctica in the past 50 years. A consequence of its rapid global invasion is the transmission of diseases previously confined to the tropics and subtropics occurring in temperate regions of the world, including the re-emergence of chikungunya and dengue in Europe. Application of pyrethroids is among the most widely-used interventions for vector control, especially in the presence of an arboviral outbreak. Studies are emerging that reveal phenotypic resistance and monitor mutations at the target site, the para sodium channel gene, primarily on a local scale. METHODS: A total of 512 Ae. albopictus mosquitoes from twelve geographic sites, including those from the native home range and invaded areas, were sampled between 2011 and 2018, and were analyzed at five codons of the para sodium channel gene with mutations predictive of resistance phenotype. Additionally, to test for the origin of unique kdr mutations in Mexico, we analyzed the genetic connectivity of southern Mexico mosquitoes with mosquitoes from home range, the Reunion Island, America and Europe. RESULTS: We detected mutations at all tested positions of the para sodium channel gene, with heterozygotes predominating and rare instance of double mutants. We observed an increase in the distribution and frequency of F1534C/L/S mutations in the ancestral China population and populations in the Mediterranean Greece, the appearance of the V1016G/I mutations as early as 2011 in Italy and mutations at position 410 and 989 in Mexico. The analyses of the distribution pattern of kdr alleles and haplotype network analyses showed evidence for multiple origins of all kdr mutations. CONCLUSIONS: Here we provide the most-up-to-date survey on the geographic and temporal distribution of pyrethroid-predictive mutations in Ae. albopictus by combining kdr genotyping on current and historical samples with published data. While we confirm low levels of pyrethroid resistance in most analyzed samples, we find increasing frequencies of F1534C/S and V1016G in China and Greece or Italy, respectively. The observed patterns of kdr allele distribution support the hypothesis that on site emergence of resistance has contributed more than spread of resistance through mosquito migration/invasions to the current widespread of kdr alleles, emphasizing the importance of local surveillance programs and resistance management.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Alelos , Animais , Arbovírus , Vetores de Doenças , Variação Genética , Genótipo , Haplótipos , Proteínas de Insetos/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação/efeitos dos fármacos , Canais de Sódio/genética
5.
Genome Biol ; 21(1): 215, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847630

RESUMO

BACKGROUND: The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. RESULTS: We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. CONCLUSION: The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.


Assuntos
Aedes/genética , Arbovírus/genética , Genoma , Mosquitos Vetores/genética , Aedes/imunologia , Aedes/virologia , Animais , Mapeamento Cromossômico , Cromossomos , Tamanho do Genoma , Imunidade , Insetos Vetores , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia , RNA Interferente Pequeno/genética , Transcriptoma
6.
Emerg Microbes Infect ; 8(1): 1265-1279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31469046

RESUMO

Since its genome details are publically available, the mosquito Aedes albopictus has become the central stage of attention for deciphering multiple biological and evolutionary aspects at the root of its success as an invasive species. Its genome of 1,967 Mb harbours an unusual high number of non-retroviral integrated RNA virus sequences (NIRVS). NIRVS are enriched in piRNA clusters and produce piRNAs, suggesting an antiviral effect. Here, we investigated the evolutionary history of NIRVS in geographically distant Ae. albopictus populations by comparing genetic variation as derived by neutral microsatellite loci and seven selected NIRVS. We found that the evolution of NIRVS was far to be neutral with variations both in their distribution and sequence polymorphism among Ae. albopictus populations. The Flaviviral elements AlbFlavi2 and AlbFlavi36 were more deeply investigated in their association with dissemination rates of dengue virus (DENV) and chikungunya virus (CHIKV) in Ae. albopictus at both population and individual levels. Our results show a complex association between NIRVS and DENV/CHIKV opening a new avenue for investigating the functional role of NIRVS as antiviral elements shaping vector competence of mosquitoes to arboviruses.


Assuntos
Aedes/genética , Evolução Molecular , Flaviviridae/genética , Genoma de Inseto , Mosquitos Vetores/genética , Aedes/imunologia , Aedes/virologia , Animais , Vírus Chikungunya/isolamento & purificação , Vírus da Dengue/isolamento & purificação , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia , RNA Interferente Pequeno/genética
7.
PLoS Negl Trop Dis ; 13(12): e0007919, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31790401

RESUMO

Current knowledge of the piRNA pathway is based mainly on studies on Drosophila melanogaster where three proteins of the Piwi subclade of the Argonaute family interact with PIWI-interacting RNAs to silence transposable elements in gonadal tissues. In mosquito species that transmit epidemic arboviruses such as dengue and chikungunya viruses, Piwi clade genes underwent expansion, are also expressed in the soma and cross-talk with proteins of recognized antiviral function cannot be excluded for some Piwi proteins. These observations underscore the importance of expanding our knowledge of the piRNA pathway beyond the model organism D. melanogaster. Here we focus on the emerging arboviral vector Aedes albopictus and we couple traditional approaches of expression and adaptive evolution analyses with most current computational predictions of protein structure to study evolutionary divergence among Piwi clade proteins. Superposition of protein homology models indicate possible high structure similarity among all Piwi proteins, with high levels of amino acid conservation in the inner regions devoted to RNA binding. On the contrary, solvent-exposed surfaces showed low conservation, with several sites under positive selection. Analysis of the expression profiles of Piwi transcripts during mosquito development and following infection with dengue serotype 1 or chikungunya viruses showed a concerted elicitation of all Piwi transcripts during viral dissemination of dengue viruses while maintenance of infection relied on expression of primarily Piwi5. Opposite, establishment of persistent infection by chikungunya virus is accompanied by increased expression of all Piwi genes, particularly Piwi4 and, again, Piwi5. Overall these results are consistent with functional specialization and a general antiviral role for Piwi5. Experimental evidences of sites under positive selection in Piwi1/3, Piwi4 and Piwi6, that have complex expression profiles, provide useful knowledge to design tailored functional experiments.


Assuntos
Aedes/classificação , Aedes/genética , Proteínas Argonautas/genética , Variação Genética , Proteínas de Insetos/genética , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Animais , Proteínas Argonautas/biossíntese , Sequência Conservada , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Genótipo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA