Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6969, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138200

RESUMO

Bloodstream infections caused by the opportunistic pathogen Klebsiella pneumoniae are associated with adverse health complications and high mortality rates. Antimicrobial resistance (AMR) limits available treatment options, thus exacerbating its public health and clinical burden. Here, we aim to elucidate the population structure of K. pneumoniae in bloodstream infections from a single medical center and the drivers that facilitate the dissemination of AMR. Analysis of 136 short-read genome sequences complemented with 12 long-read sequences shows the population consisting of 94 sequence types (STs) and 99 clonal groups, including globally distributed multidrug resistant and hypervirulent clones. In vitro antimicrobial susceptibility testing and in silico identification of AMR determinants reveal high concordance (90.44-100%) for aminoglycosides, beta-lactams, carbapenems, cephalosporins, quinolones, and sulfonamides. IncF plasmids mediate the clonal (within the same lineage) and horizontal (between lineages) transmission of the extended-spectrum beta-lactamase gene blaCTX-M-15. Nearly identical plasmids are recovered from isolates over a span of two years indicating long-term persistence. The genetic determinants for hypervirulence are carried on plasmids exhibiting genomic rearrangement, loss, and/or truncation. Our findings highlight the importance of considering both the genetic background of host strains and the routes of plasmid transmission in understanding the spread of AMR in bloodstream infections.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Plasmídeos/genética , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Bacteriemia/microbiologia , Bacteriemia/transmissão , Virulência/genética , Carbapenêmicos/farmacologia
2.
NPJ Antimicrob Resist ; 2(1): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725655

RESUMO

Staphylococcus aureus in the bloodstream causes high morbidity and mortality, exacerbated by the spread of multidrug-resistant and methicillin-resistant S. aureus (MRSA). We aimed to characterize the circulating lineages of S. aureus from bloodstream infections and the contribution of individual lineages to resistance over time. Here, we generated 852 high-quality short-read draft genome sequences of S. aureus isolates from patient blood cultures in a single hospital from 2010 to 2022. A total of 80 previously recognized sequence types (ST) and five major clonal complexes are present in the population. Two frequently detected lineages, ST5 and ST8 exhibited fluctuating demographic structures throughout their histories. The rise and fall in their population growth coincided with the acquisition of antimicrobial resistance, mobile genetic elements, and superantigen genes, thus shaping the accessory genome structure across the entire population. These results reflect undetected selective events and changing ecology of multidrug-resistant S. aureus in the bloodstream.

3.
Microbiol Spectr ; : e0054923, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676032

RESUMO

Klebsiella oxytoca is an opportunistic pathogen causing serious nosocomial infections. Knowledge about the population structure and diversity of healthcare-associated K. oxytoca from a genomic standpoint remains limited. Here, we characterized the phylogenetic relationships and genomic characteristics of 20 K. oxytoca sensu stricto isolates recovered from bloodstream infections at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA from 2017 to 2021. Results revealed a diverse population consisting of 15 sequence types (STs) that together harbored 10 variants of the intrinsic beta-lactamase gene bla OXY-2, conferring resistance to penicillins. Similar sets of antimicrobial resistance (AMR) determinants reside in multiple distinct lineages, with no one lineage dominating the local population. To place the New Hampshire K. oxytoca in a broader context, we compared them to 304 publicly available genomes of clinical isolates from 18 countries. This global clinical K. oxytoca sensu stricto population is represented by over 65 STs that together harbored resistance genes against 14 antimicrobial classes, including eight bla OXY-2 variants. Three dominant STs in the global population (ST2, ST176, ST199) circulate across multiple countries and were also present in the New Hampshire population. The global K. oxytoca population is genetically diverse, but there is evidence for broad dissemination of a few lineages carrying distinct set of AMR determinants. Our findings reveal the clinical diversity of K. oxytoca sensu stricto and its importance in surveillance efforts aimed at monitoring the evolution of this drug-resistant nosocomial pathogen. IMPORTANCE The opportunistic pathogen Klebsiella oxytoca has been increasingly implicated in patient morbidity and mortality worldwide, including several outbreaks in healthcare settings. The emergence and spread of antimicrobial resistant strains exacerbate the disease burden caused by this species. Our study showed that clinical K. oxytoca sensu stricto is phylogenetically diverse, harboring various antimicrobial resistance determinants and bla OXY-2 variants. Understanding the genomic and population structure of K. oxytoca is important for international initiatives and local epidemiological efforts for surveillance and control of drug-resistant K. oxytoca.

4.
Commun Biol ; 6(1): 482, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137974

RESUMO

Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.


Assuntos
Bacteriófagos , Coagulase , Animais , Humanos , Coagulase/genética , Staphylococcus/genética , Plasmídeos
5.
Microbiol Resour Announc ; 11(10): e0071422, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125295

RESUMO

Mammaliicoccus sciuri (previously Staphylococcus sciuri) is a frequent colonizer of mammals. We report the draft genomes of a methicillin-resistant strain (2254A) isolated from an armadillo and a methicillin-susceptible strain (6942A) from a cow. Genomes were sequenced using long-read Nanopore sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA