Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(3): 369-381, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816043

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease. There is accumulating evidence that HD patients have increased prevalence of conduction abnormalities and compromised sinoatrial node function which could lead to increased risk for arrhythmia. We used mutant Huntingtin (mHTT) expressing bacterial artificial chromosome Huntington's disease mice to determine if they exhibit electrocardiogram (ECG) abnormalities involving cardiac conduction that are known to increase risk of sudden arrhythmic death in humans. We obtained surface ECGs and analyzed arrhythmia susceptibility; we observed prolonged QRS duration, increases in PVCs as well as PACs. Abnormal histological and structural changes that could lead to cardiac conduction system dysfunction were seen. Finally, we observed decreases in desmosomal proteins, plakophilin-2 and desmoglein-2, which have been reported to cause cardiac arrhythmias and reduced conduction. Our study indicates that mHTT could cause progressive cardiac conduction system pathology that could increase the susceptibility to arrhythmias and sudden cardiac death in HD patients.


Assuntos
Arritmias Cardíacas/patologia , Modelos Animais de Doenças , Eletrocardiografia/métodos , Sistema de Condução Cardíaco/patologia , Proteína Huntingtina/genética , Doença de Huntington/complicações , Neurônios/patologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Sistema de Condução Cardíaco/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
2.
Acta Neuropathol Commun ; 11(1): 70, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118844

RESUMO

Loss of function progranulin (GRN) mutations are a major autosomal dominant cause of frontotemporal dementia (FTD). Patients with FTD due to GRN mutations (FTD-GRN) develop frontotemporal lobar degeneration with TDP-43 pathology type A (FTLD-TDP type A) and exhibit elevated levels of lysosomal proteins and storage material in frontal cortex, perhaps indicating lysosomal dysfunction as a mechanism of disease. To investigate whether patients with sporadic FTLD exhibit similar signs of lysosomal dysfunction, we compared lysosomal protein levels, transcript levels, and storage material in patients with FTD-GRN or sporadic FTLD-TDP type A. We analyzed samples from frontal cortex, a degenerated brain region, and occipital cortex, a relatively spared brain region. In frontal cortex, patients with sporadic FTLD-TDP type A exhibited similar increases in lysosomal protein levels, transcript levels, and storage material as patients with FTD-GRN. In occipital cortex of both patient groups, most lysosomal measures did not differ from controls. Frontal cortex from a transgenic mouse model of TDP-opathy had similar increases in cathepsin D and lysosomal storage material, showing that TDP-opathy and neurodegeneration can drive these changes independently of progranulin. To investigate these changes in additional FTLD subtypes, we analyzed frontal cortical samples from patients with sporadic FTLD-TDP type C or Pick's disease, an FTLD-tau subtype. All sporadic FTLD groups had similar increases in cathepsin D activity, lysosomal membrane proteins, and storage material as FTD-GRN patients. However, patients with FTLD-TDP type C or Pick's disease did not have similar increases in lysosomal transcripts as patients with FTD-GRN or sporadic FTLD-TDP type A. Based on these data, accumulation of lysosomal proteins and storage material may be a common aspect of end-stage FTLD. However, the unique changes in gene expression in patients with FTD-GRN or sporadic FTLD-TDP type A may indicate distinct underlying lysosomal changes among FTLD subtypes.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença de Pick , Camundongos , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Doença de Pick/patologia , Progranulinas/genética , Catepsina D/genética , Degeneração Lobar Frontotemporal/patologia , Mutação/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA