Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Chem Biodivers ; : e202400538, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639566

RESUMO

This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i. p.) with withanicandrin (4; 20 and 40 mg/kg; 20 µL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5 % and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).

2.
Arch Biochem Biophys ; 748: 109782, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839789

RESUMO

The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 µg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.


Assuntos
Clorpromazina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Simulação de Acoplamento Molecular , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Antibacterianos/química , Ciprofloxacina/farmacologia , Etídio , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
3.
Planta Med ; 89(10): 979-989, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36940928

RESUMO

Rauvolfia species are well known as producers of bioactive monoterpene indole alkaloids, which exhibit a broad spectrum of biological activities. A new vobasine-sarpagan-type bisindole alkaloid (1: ) along with six known monomeric indoles (2, 3/4, 5: , and 6/7: ) were isolated from the ethanol extract of the roots of Rauvolfia ligustrina. The structure of the new compound was elucidated by interpretation of their spectroscopic data (1D and 2D NMR and HRESIMS) and comparison with published data for analog compounds. The cytotoxicity of the isolated compounds was screened in a zebrafish (Danio rerio) model. The possible GABAergic (diazepam as the positive control) and serotoninergic (fluoxetine as the positive control) mechanisms of action in adult zebrafish were also evaluated. No compounds were cytotoxic. Compound 2: and the epimers 3: /4: and 6: /7: showed a mechanism action by GABAA, while compound 1: showed a mechanism action by a serotonin receptor (anxiolytic activity). Molecular docking studies showed that compounds 2: and 5: have a greater affinity by the GABAA receptor when compared with diazepam, whereas 1: showed the best affinity for the 5HT2AR channel when compared to risperidone.


Assuntos
Alcaloides , Ansiolíticos , Antineoplásicos , Rauwolfia , Animais , Rauwolfia/química , Ansiolíticos/farmacologia , Peixe-Zebra , Simulação de Acoplamento Molecular , Alcaloides Indólicos/química , Diazepam/farmacologia , Receptores de GABA-A , Estrutura Molecular
4.
Curr Microbiol ; 80(5): 176, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029832

RESUMO

Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3ß,6ß,16ß-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.


Assuntos
Combretum , Staphylococcus aureus Resistente à Meticilina , Triterpenos , Staphylococcus aureus , Combretum/química , Staphylococcus , Triterpenos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ampicilina/farmacologia , Biofilmes , Staphylococcus epidermidis , Testes de Sensibilidade Microbiana
5.
Phys Chem Chem Phys ; 24(8): 5052-5069, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35144275

RESUMO

Chagas disease is a leading public health problem. More than 8 million people are affected by the disease, which is endemic in 21 countries in Latin America, generating an average annual cost of 7.2 billion dollars per year. The conventional treatment of Chagas disease is carried out by administering the drug benznidazole (BZN), which has caused numerous adverse reactions. Hence, the search for new, more efficient, and less toxic anti-chagasic agents is essential. Recently, chalcones have been researched to propose new therapies against neglected diseases, mainly Trypanosoma cruzi. The objective of this work was to evaluate for the first time the antiproliferative potential of chalcone derived from the natural product on T. cruzi strain Y. The molecular structure of the chalcone was confirmed by spectrometric data. The toxicity of chalcone in LLC-MK2 cells indicated that a concentration of 514.10 ± 62.40 µM was able to reduce cell viability by 50%. Regarding the effect of chalcone on epimastigote forms, an IC50 value of 46.57 ± 9.81 µM was observed; 45.92 ± 8.42 and 16.32 ± 3.41 µM at times of 24, 48 and 72 hours, respectively. The chalcone was able to eliminate trypomastigote forms at all concentrations tested, except for 31.25 µM, with LC50 values of 117.90 ± 12.60 µM, lower than the reference drug BZN (161.40 ± 31. 80 µM). The mechanism of action may be related to the membrane damage provoked by reduction of the mitochondrial potential. The anti-T. cruzi effect can be assigned through some structural aspects of the chalcone as the nitro group (NO2) is present, which can be enzymatically reduced forming a nitro radical, and the presence of methoxyl groups in the A ring of the chalcone. In silico studies showed that the chalcone had a higher affinity for cruzain when compared to BZN and the co-crystallized inhibitor KB2, as it presented a more thermodynamically stable complex in the order of -6.9 kcal mol-1. The pharmacokinetic prediction showed a significant probability of antiprotozoal activity, a good volume of distribution after being absorbed in the intestine, and a low chance of activity in the central nervous system. Therefore, these results suggest that the chalcone can become a potential cruzain enzyme inhibitor with trypanocidal activity.


Assuntos
Chalcona , Tripanossomicidas , Produtos Biológicos , Chalcona/farmacologia , Humanos , Simulação de Acoplamento Molecular , Tripanossomicidas/farmacologia , Trypanosoma cruzi/metabolismo
6.
Biochem Biophys Res Commun ; 537: 71-77, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33387885

RESUMO

The sanitary emergency generated by the pandemic COVID-19, instigates the search for scientific strategies to mitigate the damage caused by the disease to different sectors of society. The disease caused by the coronavirus, SARS-CoV-2, reached 216 countries/territories, where about 20 million people were reported with the infection. Of these, more than 740,000 died. In view of the situation, strategies involving the development of new antiviral molecules are extremely important. The present work evaluated, through molecular docking assays, the interactions of 4'-acetamidechalcones with enzymatic and structural targets of SARS-CoV-2 and with the host's ACE2, which is recognized by the virus, facilitating its entry into cells. Therefore, it was observed that, regarding the interactions of chalcones with Main protease (Mpro), the chalcone N-(4'[(2E)-3-(4-flurophenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPF) has the potential for coupling in the same region as the natural inhibitor FJC through strong hydrogen bonding. The formation of two strong hydrogen bonds between N-(4[(2E)-3-(phenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAB) and the NSP16-NSP10 heterodimer methyltransferase was also noted. N-(4[(2E)-3-(4-methoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPM) and N-(4-[(2E)-3-(4-ethoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPE) chalcones showed at least one strong intensity interaction of the SPIKE protein. N-(4[(2E)-3-(4-dimetilaminophenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAPA) chalcone had a better affinity with ACE2, with strong hydrogen interactions. Together, our results suggest that 4'-acetamidechalcones inhibit the interaction of the virus with host cells through binding to ACE2 or SPIKE protein, probably generating a steric impediment. In addition, chalcones have an affinity for important enzymes in post-translational processes, interfering with viral replication.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Enzima de Conversão de Angiotensina 2/química , Antivirais/farmacologia , Chalcona/análogos & derivados , Proteases 3C de Coronavírus/química , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Chalcona/química , Chalcona/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2/química , SARS-CoV-2/enzimologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral/efeitos dos fármacos
7.
Biochem Biophys Res Commun ; 534: 478-484, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261884

RESUMO

Croton zehntneri is a plant known as canelinha de cunhã, prevalent in the northeast region of Brazil. Many constituents of the vegetable have already been studied, and their pharmacological properties have been proven, but this is the first study to analyze the antinociceptive effect in adult zebrafish (ZFa) of the triterpene acetyl aleuritolic acid (AAA) isolated from the stem bark. The animals (ZFa; n = 6/group) were treated intraperitoneally (ip; 20 µL) with AAA (0.1 or 0.3 or 1.0 mg/mL) or vehicle (0.9% saline; 20 µL), and submitted to the locomotor activity test, as well as 96 h acute toxicity. Other groups (n = 6/each) received the same treatments and underwent acute nociception tests (formalin, cinnamaldehyde, glutamate, acid saline, capsaicin, and hypertonic saline). Possible neuromodulation mechanisms were evaluated. AAA (0.1 or 0.3 or 1.0 mg/mL) reduced the nociceptive behavior induced by acid saline and capsaicin, as well as inhibited corneal nociception induced by hypertonic saline, both without altering the animals' locomotor system and without toxicity. These analgesic effects of AAA were significantly (p > 0.05) similar to those of morphine, used as a positive control. The antinociceptive effect of AAA was inhibited by methylene blue, ketamine, camphor, ruthenium red, amiloride, and mefenamic acid. The antinociceptive effect of AAA on the cornea of animals was inhibited by capsazepine. Therefore, AAA showed pharmacological potential for the treatment of acute pain, and this effect is modulated by cGMP, NMDA receptors, transient receptor potential channels (TRPs), ASICs and has pharmacological potential for the treatment of corneal pain modulated by the TRPV1 channel.


Assuntos
Analgésicos/farmacologia , Nociceptividade/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Triterpenos/farmacologia , Analgésicos/química , Animais , Córnea/efeitos dos fármacos , Córnea/fisiologia , Croton/química , Modelos Moleculares , Ácidos Palmíticos/química , Triterpenos/química , Peixe-Zebra/fisiologia
8.
Microb Pathog ; 155: 104892, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33894289

RESUMO

Staphylococcus aureus is a commensal bacterium and opportunistic human pathogen that can cause a wide variety of clinical infections. It is recognized for its ability to acquire antimicrobial resistance, so methicillin-resistant Staphylococcus aureus (MRSA) infections are a global healthcare challenge. Therefore, the development of new therapeutic options and alternative therapies for treatment is necessary. Curcumin, a polyphenolic substance found in the rhizome of turmeric longa L, has been shown to have several therapeutic properties, including antimicrobial activity. The objective of the study was to evaluate the in vitro antibacterial activity of curcumin alone and associated with oxacillin against MRSA strains, to analyze the mechanism of cell death involved in the isolated action of curcumin by means of flow cytometry and molecular docking, and to verify its superbiofilm action. Curcumin showed antibacterial activity in the range of 125-500 µg/mL against the tested strains, since it caused an increase in membrane permeability and DNA fragmentation, as revealed by flow cytometry analysis. Moreover, it was possible to observe interactions of curcumin with wild-type S. aureus DHFR, S. aureus gyrase and S. aureus gyrase complex with DNA, DNA (5'-D(*CP*GP*AP*TP*GP*CP*G)-3') and Acyl-PBP2a from MRSA by molecular docking. Curcumin also had a synergistic and additive effect when associated with oxacillin, and significantly reduced the cell viability of the analyzed biofilms. Thus, curcumin is a possible candidate for pharmaceutical formulation development for the treatment of MRSA infections.


Assuntos
Curcumina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Biofilmes , Curcumina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Plâncton , Staphylococcus aureus
9.
Microb Pathog ; 155: 104894, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33894291

RESUMO

Staphylococcus aureus is responsible for a series of infections occurring in both human and animal hosts. S. aureus SA1199B is a strain resistant to hydrophilic fluoroquinolone due to overproduction of the NorA efflux pump that has been used as a microbial model to evaluate if a compound act as efflux pump inhibitor. Finding substances from natural or synthetic origin able to reverse resistance mechanisms like those of efflux pumps is a challenge. The use of Chalcones and their derivatives is of great chemical and pharmacological interest, as they present a simple structure and several pharmacological activities. This study aims to evaluate the antibacterial potential of 4 synthetic chalcones, as well as to evaluate their action in the modulation of Norfloxacin resistance against the strain SA1199B strain. Microdilution assays were performed for evaluation of the antimicrobial activity. For evaluation of the modulating effect on resistance to Norfloxacin or EtBr, MIC values of these compounds were determined in the absence or presence of subinhibitory concentrations used of each chalcone. MICs values of both Norfloxacin and EtBr were significantly reduced in the presence of all tested chalcones, indicating that inhibition of the active efflux of these compounds by NorA could be a possible mechanism of action of the chalcones. These results show that the compounds studied have a high potential as a NorA inhibitor, with the best modulating effect verified for the compound 3. Pharmacokinetic and toxicity predictive studies indicated a high intestinal absorption and good volume of distribution for chalcones by oral administration, activity in the central nervous system and ease to be transported between biological membranes. Emphasizing that analogs 1 and 4 were easily metabolized by CYP3A4 enzyme, constituting a pharmacological active ingredient without toxic risk due to metabolic activation. These chalcones combined with Norfloxacin could be a promise technological strategy to be applied in the treatment of infections caused by S. aureus overproducing NorA.


Assuntos
Chalcona , Chalconas , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Chalconas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Norfloxacino/farmacologia , Staphylococcus aureus/metabolismo
10.
Arch Microbiol ; 203(7): 4727-4736, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34052872

RESUMO

Infectious diseases caused by multidrug-resistant microorganisms has increased in the last years. Piper species have been reported as a natural source of phytochemicals that can help in combating fungal and bacterial infections. This study had as objectives characterize the chemical composition of the essential oil from Piper caldense (EOPC), evaluate its potential antimicrobial activity, and investigate the synergistic effect with Norfloxacin against multidrug-resistant S. aureus overproducing efflux pumps, as well as, verify the EOPC ability to inhibit the Candida albicans filamentation. EOPC was extracted by hydrodistillation, and the chemical constituents were identified by gas chromatography, allowing the identification of 24 compounds (91.9%) classified as hydrocarbon sesquiterpenes (49.6%) and oxygenated sesquiterpenes (39.5%). Antimicrobial tests were performed using a 96-well plate microdilution method against C. albicans ATCC 10231, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 standard strains, as well as against multidrug-resistant strains S. aureus SA1199B (overexpressing norA gene), S. aureus K2068 (overexpressing mepA gene) and S. aureus K4100 (overexpressing qacC gene). The oil showed activity against C. albicans ATCC 10231 (≥ 512 µg/mL) and was able to inhibit hyphae formation, an important mechanism of virulence of C. albicans. On the other hand, EOPC was inactive against all bacterial strains tested (≤ 1,024 µg mL). However, when combined with Norfloxacin at subinhibitory concentration EOPC reduced the Norfloxacin and Ethidium bromide MIC values against S. aureus strains SA1199B, K2068 and K4100. These results indicate that EOPC is a source of phytochemicals acting as NorA, MepA and QacC inhibitors.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus Resistente à Meticilina , Norfloxacino , Óleos Voláteis , Piper , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Norfloxacino/química , Norfloxacino/farmacologia , Óleos Voláteis/farmacologia , Piper/química , Piper/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
11.
Arch Microbiol ; 204(1): 63, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940944

RESUMO

The Staphylococcus aureus bacteria is a Gram-positive, immobile, non-spore bacterium, with catalase and positive coagulase, among other characteristics. It is responsible for important infections caused in the population and for hospital infections. Because of that many strategies are being developed to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are found in parts of plants and can be found, for example, in the roots, leaves, bark, among others, but are mainly found as petal pigments, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities. This study aimed to evaluate the ability of chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one to reverse the efflux pump resistance, present in the bacteria S. aureus 1199B and S. aureus K2068. The synthetic chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was able to synergistically modulate the antibiotic Ciprofloxacino and Ethidium Bromide against the bacterial strain S. aureus K2068, and with the antibiotic Norfloxacino against the strain 1199B. Thus, it is suggested that this chalcone may be acting by inhibiting the efflux pump mechanism of these bactéria. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalocne did not present a severe risk of toxicity, such as genetic mutation or cardiotoxicity. Molecular docking showed that the chalcone could act as a competitive inhibitor of the MepA efflux pump, as at hinders the binding of other substrates, such as EtBr.


Assuntos
Chalcona , Chalconas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chalcona/farmacologia , Chalconas/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus/metabolismo
12.
Epilepsy Behav ; 117: 107881, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711684

RESUMO

In the treatment of anxiety and seizures, drugs of the benzodiazepine (BZD) class are used, which act on the Central Nervous System (CNS) through the neurotransmitter gamma-aminobutyric acid (GABA). Flavonoids modulate GABAA receptors. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of synthetic chalcones and their mechanisms of action via the GABAergic system, using adult zebrafish (ZFa). The animals were treated with chalcones (4.0 or 20 or 40 mg/kg; 20 µL; i.p) and submitted to the open field and 96 h toxicity test. Chalcones that cause locomotor alteration were evaluated in the light and dark anxiolytic test. The same doses of chalcones were evaluated in the anticonvulsant test. The lowest effective dose was chosen to assess the possible involvement in the GABAA receptor by blocking the flumazenil (fmz) antagonist. No chalcone was toxic and altered ZFa's locomotion. All chalcones had anxiolytic and anticonvulsant effects, mainly chalcones 1, where all doses showed effects in both tests. These effects were blocked by Fmz (antagonist GABAA), where it shows evidence of the performance of these activities of the GABA system. Therefore, this study demonstrated in relation to structure-activity, that the position of the substituents is important in the intensity of activities and that the absence of toxicity and the action of these compounds in the CNS, shows the pharmacological potential of these molecules, and, therefore, the insights are designed for the development of new drugs.


Assuntos
Ansiolíticos , Chalconas , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Comportamento Animal , Chalconas/uso terapêutico , Receptores de GABA-A , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Peixe-Zebra
13.
Can J Microbiol ; 67(12): 885-893, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34314621

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main human pathogens and is responsible for many diseases, ranging from skin infections to more invasive infections. These infections are dangerous and expensive to treat because these strains are resistant to a large number of conventional antibiotics. Thus, the antibacterial effect of ketamine against MRSA strains, its mechanism of action, and in silico interaction with sortase A were evaluated. The antibacterial effect of ketamine was assessed using the broth microdilution method. Subsequently, the mechanism of action was assessed using flow cytometry and molecular docking assays with sortase A. Our results showed that ketamine has a significant antibacterial activity against MRSA strains in the range of 2.49-3.73 mM. Their mechanism of action involves alterations in membrane integrity and DNA damage, reducing cell viability, and inducing apoptosis. In addition, ketamine had an affinity for S. aureus sortase A. These results indicate that this compound can be used as an alternative to develop new strategies to combat infections caused by MRSA.


Assuntos
Ketamina , Staphylococcus aureus Resistente à Meticilina , Aminoaciltransferases , Antibacterianos/farmacologia , Proteínas de Bactérias , Cisteína Endopeptidases , Humanos , Ketamina/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus
14.
Curr Microbiol ; 78(5): 1926-1938, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33782740

RESUMO

A large number of infections are caused by Gram-positive and Gram-negative multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. The indiscriminate uses of antibiotics, as well as their misuse, resulted in the selection of bacteria resistant to known antibiotics, for which it has little or no treatment. In this way, the strategies to combat the resistance of microorganisms are extremely important and, essential oils of Croton species have been extensively studied for this purpose. The aim of this study was to carry the evaluation of antibacterial, antibiofilm, antioxidant activities, and spectroscopic investigation of essential oil from Croton piauhiensis (EOCp). The EOCp exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria with required MICs ranging from 0.15 to 5% (v/v). In addition, the MBC of the EOCp for Staphylococcus aureus ATCC 25923 and ATCC 700698, were 0.15 and 1.25%, respectively. Moreover, the EOCp significantly reduced significantly the biofilm production and the number of viable cells from the biofilm of all bacterial strains tested. The antioxidant potential of the EOCp showed EC50 values ranging from 171.21 to 4623.83 µg/mL. The EOCp caused hemolysis (>45%) at the higher concentrations tested (1.25 to 5%), and minor hemolysis (17.6%) at a concentration of 0.07%. In addition, docking studies indicated D-limonene as a phytochemical with potential for antimicrobial activity. This study indicated that the EOCp may be a potential agent against infections caused by bacterial biofilms, and act as a protective agent against ROS and oxidative stress.


Assuntos
Anti-Infecciosos , Croton , Óleos Voláteis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biofilmes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia
15.
Microb Pathog ; 148: 104365, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32619669

RESUMO

Coronavirus (COVID-19) is an enveloped RNA virus that is diversely found in humans and that has now been declared a global pandemic by the World Health Organization. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In this context, this study aimed to evaluate in silico the molecular interactions of drugs with therapeutic indications for treatment of COVID-19 (Azithromycin, Baricitinib and Hydroxychloroquine) and drugs with similar structures (Chloroquine, Quinacrine and Ruxolitinib) in docking models from the SARS-CoV-2 main protease (M-pro) protein. The results showed that all inhibitors bound to the same enzyme site, more specifically in domain III of the SARS-CoV-2 main protease. Therefore, this study allows proposing the use of baricitinib and quinacrine, in combination with azithromycin; however, these computer simulations are just an initial step for conceiving new projects for the development of antiviral molecules.


Assuntos
Antivirais/química , Antivirais/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , SARS-CoV-2/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Tratamento Farmacológico da COVID-19
16.
Mol Biotechnol ; 66(2): 254-269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37079267

RESUMO

Tinnitus is a syndrome that affects the human auditory system and is characterized by a perception of sounds in the absence of acoustic stimuli, or in total silence. Research indicates that muscarinic acetylcholine receptors (mAChRs), especially the M1 type, have a fundamental role in the alterations of auditory perceptions of tinnitus. Here, a series of computer-aided tools were used, from molecular surface analysis software to services available on the web for estimating pharmacokinetics and pharmacodynamics. The results infer that the low lipophilicity ligands, that is, the 1a-d alkyl furans, present the best pharmacokinetic profile, as compounds with an optimal alignment between permeability and clearance. However, only ligands 1a and 1b have properties that are safe for the central nervous system, the site of cholinergic modulation. These ligands showed similarity with compounds deposited in the European Molecular Biology Laboratory chemical (ChEMBL) database acting on the mAChRs M1 type, the target selected for the molecular docking test. The simulations suggest that the 1 g ligand can form the ligand-receptor complex with the best affinity energy order and that, together with the 1b ligand, they are competitive agonists in relation to the antagonist Tiotropium, in addition to acting in synergism with the drug Bromazepam in the treatment of chronic tinnitus.


Assuntos
Receptor Muscarínico M1 , Zumbido , Humanos , Receptor Muscarínico M1/química , Acetilcolina/farmacologia , Simulação de Acoplamento Molecular , Ligantes , Zumbido/tratamento farmacológico
17.
3 Biotech ; 14(5): 135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38665880

RESUMO

Extracts from Mangifera indica leaves and its main component, mangiferin, have proven antidiabetic activity. In this study, mangiferin and its natural derivatives Homomangiferin (HMF), Isomangiferin (IMF), Neomangiferin (NMF), Glucomangiferin (GMF), Mangiferin 6'-gallate (MFG), and Norathyriol (NRT) were compared regarding their action on Diabetes mellitus (DM), employing docking and molecular dynamics (MD) simulations to analyze interactions with the aldose reductase enzyme, the precursor to the conversion of glucose into sorbitol. Notably, HMF showed significant affinity to residues in the active site of the enzyme, including Trp 79, His 110, Trp 111, Phe 122, and Phe 300, with an energy of - 7.2 kcal/mol, observed in the molecular docking simulations. MD reinforced the formation of stable complexes for HMF and MFG with the aldose reductase, with interaction potential energies (IPE) in the order of - 300.812 ± 52 kJ/mol and - 304.812 ± 52 kJ/mol, respectively. The drug-likeness assessment, by multiparameter optimization (MPO), highlighted that HMF and IMF have similarities with polyphenols and glycosidic flavonoids recently patented as antidiabetics, revealing that high polarity (TPSA > 180 Å2) is a favorable property for subcutaneous administration, especially because of the gradual passive cell permeability values in biological tissues, with Papp values estimated at < 10 × 10-6 cm/s. These compounds are metabolically stable against metabolic enzymes, resulting in a low toxic incidence by metabolic activation, corroborating with a lethal dose (LD50) greater than 2000 mg/kg. In this way, HMF showed a systematic alignment between predicted pharmacokinetics and pharmacodynamics, characterizing it as the most favorable substance for inhibiting aldose reductase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03978-9.

18.
Future Med Chem ; 16(1): 11-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084595

RESUMO

Aim: Our objective was to investigate the trypanocidal effect of the chalcone (2E,4E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-5-phenylpenta-2,4-dien-1-one (CPNC). Material & methods: Cytotoxicity toward LLC-MK2 host cells was assessed by MTT assay, and the effect on Trypanosoma cruzi life forms (epimastigotes, trypomastigotes and amastigotes) was evaluated by counting. Flow cytometry analysis was performed to evaluate the possible mechanisms of action. Finally, molecular docking simulations were performed to evaluate interactions between CPNC and T. cruzi enzymes. Results: CPNC showed activity against epimastigote, trypomastigote and amastigote life forms, induced membrane damage, increased cytoplasmic reactive oxygen species and mitochondrial dysfunction on T. cruzi. Regarding molecular docking, CPNC interacted with both trypanothione reductase and TcCr enzymes. Conclusion: CPNC presented a trypanocidal effect, and its effect is related to oxidative stress, mitochondrial impairment and necrosis.


Assuntos
Doença de Chagas , Chalconas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Chalconas/farmacologia , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Espécies Reativas de Oxigênio , Tripanossomicidas/farmacologia
19.
Mol Biotechnol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834896

RESUMO

Parkinson's disease (PD) is a debilitating condition that can cause locomotor problems in affected patients, such as tremors and body rigidity. PD therapy often includes the use of monoamine oxidase B (MAOB) inhibitors, particularly phenylhalogen compounds and coumarin-based semi-synthetic compounds. The objective of this study was to analyze the structural, pharmacokinetic, and pharmacodynamic profile of a series of Triazolo Thiadiazepine-fused Coumarin Derivatives (TDCDs) against MAOB, in comparison with the inhibitor safinamide. To achieve this goal, we utilized structure-based virtual screening techniques, including target prediction and absorption, distribution, metabolism, and excretion (ADME) prediction based on multi-parameter optimization (MPO) topological analysis, as well as ligand-based virtual screening techniques, such as docking and molecular dynamics. The findings indicate that the TDCDs exhibit structural similarity to other bioactive compounds containing coumarin and MAOB-binding azoles, which are present in the ChEMBL database. The topological analyses suggest that TDCD3 has the best ADME profile, particularly due to the alignment between low lipophilicity and high polarity. The coumarin and triazole portions make a strong contribution to this profile, resulting in a permeability with Papp estimated at 2.15 × 10-5 cm/s, indicating high cell viability. The substance is predicted to be metabolically stable. It is important to note that this is an objective evaluation based on the available data. Molecular docking simulations showed that the ligand has an affinity energy of - 8.075 kcal/mol with MAOB and interacts with biological substrate residues such as Pro102 and Phe103. The results suggest that the compound has a safe profile in relation to the MAOB model, making it a promising active ingredient for the treatment of PD.

20.
Fundam Clin Pharmacol ; 38(1): 84-98, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37649138

RESUMO

BACKGROUND: Thiadiazines are heterocyclic compounds that contain two nitrogen atoms and one sulfur atom in their structure. These synthetic molecules have several relevant pharmacological activities, such as antifungal, antibacterial, and antiparasitic. OBJECTIVES: The present study aimed to evaluate the possible in vitro and in silico interactions of compounds derived from thiadiazines. METHODS: The compounds were initially synthesized, purified, and confirmed through HPLC methodology. Multi-drug resistant bacterial strains of Staphylococcus aureus 10 and Pseudomonas aeruginosa 24 were used to evaluate the direct and modifying antibiotic activity of thiadiazine derivatives. ADMET assays (absorption, distribution, metabolism, excretion, and toxicity) were conducted, which evaluated the influence of the compounds against thousands of macromolecules considered as bioactive targets. RESULTS: There were modifications in the chemical synthesis in carbon 4 or 3 in one of the aromatic rings of the structure where different ions were added, ensuring a variability of products. It was possible to observe results that indicate the possibility of these compounds acting through the cyclooxygenase 2 mechanism, which, in addition to being involved in inflammatory responses, also acts by helping sodium reabsorption. The amine group present in thiadiazine analogs confers hydrophilic characteristics to the substances, but this primary characteristic has been altered due to alterations and insertions of other ligands. The characteristics of the analogs generally allow easy intestinal absorption, reduce possible hepatic toxic effects, and enable possible neurological and anti-inflammatory action. The antibacterial activity tests showed a slight direct action, mainly of the IJ23 analog. Some compounds were able to modify the action of the antibiotics gentamicin and norfloxacin against multi-drug resistant strains, indicating a possible synergistic action. CONCLUSIONS: Among all the results obtained in the study, the relevance of thiadiazine analogs as possible coadjuvant drugs in the antibacterial, anti-inflammatory, and neurological action with low toxicity is clear. Need for further studies to verify these effects in living organisms is not ruled out.


Assuntos
Anti-Infecciosos , Tiadiazinas , Antibacterianos/farmacologia , Tiadiazinas/farmacologia , Tiadiazinas/química , Norfloxacino/farmacologia , Anti-Inflamatórios , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA