Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7987): 522-530, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968527

RESUMO

Recreating complex structures and functions of natural organisms in a synthetic form is a long-standing goal for humanity1. The aim is to create actuated systems with high spatial resolutions and complex material arrangements that range from elastic to rigid. Traditional manufacturing processes struggle to fabricate such complex systems2. It remains an open challenge to fabricate functional systems automatically and quickly with a wide range of elastic properties, resolutions, and integrated actuation and sensing channels2,3. We propose an inkjet deposition process called vision-controlled jetting that can create complex systems and robots. Hereby, a scanning system captures the three-dimensional print geometry and enables a digital feedback loop, which eliminates the need for mechanical planarizers. This contactless process allows us to use continuously curing chemistries and, therefore, print a broader range of material families and elastic moduli. The advances in material properties are characterized by standardized tests comparing our printed materials to the state-of-the-art. We directly fabricated a wide range of complex high-resolution composite systems and robots: tendon-driven hands, pneumatically actuated walking manipulators, pumps that mimic a heart and metamaterial structures. Our approach provides an automated, scalable, high-throughput process to manufacture high-resolution, functional multimaterial systems.


Assuntos
Impressão Tridimensional , Robótica , Humanos , Módulo de Elasticidade , Robótica/instrumentação , Robótica/métodos , Retroalimentação , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química
2.
Nano Lett ; 10(6): 2211-9, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20446663

RESUMO

Nanoparticle (NP)-mediated drug delivery typically relies on cargo release to occur passively or in response to environmental stimuli. Here we present a delivery method based on light-activated disruption of intracellular vesicles after internalization of biofunctionalized mesoporous silica nanoparticles loaded with cargo. This method combines the power of targeted delivery with the spatiotemporal control of light activation. As an example, we delivered a cell-impermeable fluorescent compound exclusively to the cytosol of multidrug resistant cancer cells in a mixed population.


Assuntos
Citosol/metabolismo , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Luz , Nanopartículas , Linhagem Celular Tumoral , Endocitose , Corantes Fluorescentes , Humanos , Microscopia Eletrônica de Transmissão , Permeabilidade
3.
Curr Opin Chem Biol ; 6(6): 865-71, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12470743

RESUMO

Several self-assembling peptide and protein systems that form nanotubes, helical ribbons and fibrous scaffolds have recently emerged as biological materials. Peptides and proteins have also been selected to bind metals, semiconductors and ions, inspiring the design of new materials for a wide range of applications in nano-biotechnology.


Assuntos
Nanotecnologia/métodos , Peptídeos/química , Sequência de Aminoácidos , Animais , Biotecnologia/métodos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA