Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Curr Opin Crit Care ; 30(1): 4-9, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085885

RESUMO

PURPOSE OF REVIEW: Describe the rationale for concern and accumulating pathophysiologic evidence regarding the adverse effects of high-level positive end expiratory pressure (PEEP) on excessive mechanical stress and ventilator-induced lung injury (VILI). RECENT FINDINGS: Although the inclusion of PEEP in numerical estimates of mechanical power may be theoretically debated, its potential to increase stress, strain, and mean airway pressure are not. Recent laboratory data in a variety of animal models demonstrate that higher levels of PEEP coupled with additional fluids needed to offset its impediment of hemodynamic function are associated with increased VILI. Moreover, counteracting end-tidal hyperinflation by external chest wall pressure may paradoxically improve respiratory mechanics, indicating that lower PEEP helps protect the small 'baby lung' of advanced acute respiratory distress syndrome (ARDS). SUMMARY: The potentially adverse effects of PEEP on VILI can be considered in three broad categories. First, the contribution of PEEP to total mechanical energy expressed through mechanical power, raised mean airway pressure, and end-tidal hyperinflation; second, the hemodynamic consequences of altered cardiac loading, heightened pulmonary vascular stress and total lung water; and third, the ventilatory consequences of compromised carbon dioxide eliminating efficiency. Minimizing ventilation demands, optimized body positioning and care to avoid unnecessary PEEP are central to lung protection in all stages of ARDS.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Humanos , Volume de Ventilação Pulmonar/fisiologia , Respiração com Pressão Positiva/efeitos adversos , Pulmão , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
2.
Crit Care ; 28(1): 141, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679712

RESUMO

Clinicians currently monitor pressure and volume at the airway opening, assuming that these observations relate closely to stresses and strains at the micro level. Indeed, this assumption forms the basis of current approaches to lung protective ventilation. Nonetheless, although the airway pressure applied under static conditions may be the same everywhere in healthy lungs, the stresses within a mechanically non-uniform ARDS lung are not. Estimating actual tissue stresses and strains that occur in a mechanically non-uniform environment must account for factors beyond the measurements from the ventilator circuit of airway pressures, tidal volume, and total mechanical power. A first conceptual step for the clinician to better define the VILI hazard requires consideration of lung unit tension, stress focusing, and intracycle power concentration. With reasonable approximations, better understanding of the value and limitations of presently used general guidelines for lung protection may eventually be developed from clinical inputs measured by the caregiver. The primary purpose of the present thought exercise is to extend our published model of a uniform, spherical lung unit to characterize the amplifications of stress (tension) and strain (area change) that occur under static conditions at interface boundaries between a sphere's surface segments having differing compliances. Together with measurable ventilating power, these are incorporated into our perspective of VILI risk. This conceptual exercise brings to light how variables that are seldom considered by the clinician but are both recognizable and measurable might help gauge the hazard for VILI of applied pressure and power.


Assuntos
Alvéolos Pulmonares , Humanos , Modelos Biológicos , Alvéolos Pulmonares/fisiologia , Alvéolos Pulmonares/fisiopatologia , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Estresse Mecânico
3.
Crit Care ; 28(1): 165, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750543

RESUMO

BACKGROUND: Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT: Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS: This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.


Assuntos
Matriz Extracelular , Pulmão , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Matriz Extracelular/metabolismo , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Pulmão/fisiopatologia , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Metaloproteinases da Matriz/metabolismo , Animais
4.
Am J Respir Crit Care Med ; 207(9): 1183-1193, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848321

RESUMO

Rationale: In the EOLIA (ECMO to Rescue Lung Injury in Severe ARDS) trial, oxygenation was similar between intervention and conventional groups, whereas [Formula: see text]e was reduced in the intervention group. Comparable reductions in ventilation intensity are theoretically possible with low-flow extracorporeal CO2 removal (ECCO2R), provided oxygenation remains acceptable. Objectives: To compare the effects of ECCO2R and extracorporeal membrane oxygenation (ECMO) on gas exchange, respiratory mechanics, and hemodynamics in animal models of pulmonary (intratracheal hydrochloric acid) and extrapulmonary (intravenous oleic acid) lung injury. Methods: Twenty-four pigs with moderate to severe hypoxemia (PaO2:FiO2 ⩽ 150 mm Hg) were randomized to ECMO (blood flow 50-60 ml/kg/min), ECCO2R (0.4 L/min), or mechanical ventilation alone. Measurements and Main Results: [Formula: see text]o2, [Formula: see text]co2, gas exchange, hemodynamics, and respiratory mechanics were measured and are presented as 24-hour averages. Oleic acid versus hydrochloric acid showed higher extravascular lung water (1,424 ± 419 vs. 574 ± 195 ml; P < 0.001), worse oxygenation (PaO2:FiO2 = 125 ± 14 vs. 151 ± 11 mm Hg; P < 0.001), but better respiratory mechanics (plateau pressure 27 ± 4 vs. 30 ± 3 cm H2O; P = 0.017). Both models led to acute severe pulmonary hypertension. In both models, ECMO (3.7 ± 0.5 L/min), compared with ECCO2R (0.4 L/min), increased mixed venous oxygen saturation and oxygenation, and improved hemodynamics (cardiac output = 6.0 ± 1.4 vs. 5.2 ± 1.4 L/min; P = 0.003). [Formula: see text]o2 and [Formula: see text]co2, irrespective of lung injury model, were lower during ECMO, resulting in lower PaCO2 and [Formula: see text]e but worse respiratory elastance compared with ECCO2R (64 ± 27 vs. 40 ± 8 cm H2O/L; P < 0.001). Conclusions: ECMO was associated with better oxygenation, lower [Formula: see text]o2, and better hemodynamics. ECCO2R may offer a potential alternative to ECMO, but there are concerns regarding its effects on hemodynamics and pulmonary hypertension.


Assuntos
Lesão Pulmonar Aguda , Hipertensão Pulmonar , Animais , Dióxido de Carbono , Ácido Clorídrico , Ácido Oleico , Respiração Artificial/métodos , Suínos
5.
Anesthesiology ; 138(4): 420-435, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571572

RESUMO

BACKGROUND: Gradually changing respiratory rate (RR) during time to reduce ventilation-induced lung injury has not been investigated. The authors hypothesized that gradual, compared with abrupt, increments in RR would mitigate ventilation-induced lung injury and that recruitment maneuver before abruptly increasing RR may prevent injurious biologic impact. METHODS: Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, 49 male Wistar rats were anesthetized and mechanically ventilated (tidal volume, 6 ml/kg; positive end-expiratory pressure, 3 cm H2O) with RR increase patterns as follows (n = 7 per group): (1) control 1, RR = 70 breaths/min for 2 h; (2) and (3) abrupt increases of RR for 1 and 2 h, respectively, both for 2 h; (4) shorter RR adaptation, gradually increasing RR (from 70 to 130 breaths/min during 30 min); (5) longer RR adaptation, more gradual increase in RR (from 70 to 130 breaths/min during 60 min), both for 2 h; (6) control 2, abrupt increase of RR maintained for 1 h; and (7) control 3, recruitment maneuver (continuous positive airway pressure, 30 cm H2O for 30 s) followed by control-2 protocol. RESULTS: At the end of 1 h of mechanical ventilation, cumulative diffuse alveolar damage scores were lower in shorter (11.0 [8.0 to 12.0]) and longer (13.0 [11.0 to 14.0]) RR adaptation groups than in animals with abrupt increase of RR for 1 h (25.0 [22.0 to 26.0], P = 0.035 and P = 0.048, respectively) and 2 h (35.0 [32.0 to 39.0], P = 0.003 and P = 0.040, respectively); mechanical power and lung heterogeneity were lower, and alveolar integrity was higher, in the longer RR adaptation group compared with abruptly adjusted groups; markers of lung inflammation (interleukin-6), epithelial (club cell secretory protein [CC-16]) and endothelial cell damage (vascular cell adhesion molecule 1 [VCAM-1]) were higher in both abrupt groups, but not in either RR adaptation group, compared with controls. Recruitment maneuver prevented the increase in VCAM-1 and CC-16 gene expressions in the abruptly increased RR groups. CONCLUSIONS: In mild experimental acute respiratory distress syndrome in rats, gradually increasing RR, compared with abruptly doing so, can mitigate the development of ventilation-induced lung injury. In addition, recruitment maneuver prevented the injurious biologic impact of abrupt increases in RR.


Assuntos
Produtos Biológicos , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Ratos , Masculino , Animais , Ratos Wistar , Taxa Respiratória , Molécula 1 de Adesão de Célula Vascular , Síndrome do Desconforto Respiratório/prevenção & controle , Pressão Positiva Contínua nas Vias Aéreas
6.
Crit Care ; 27(1): 441, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968744

RESUMO

Although the stretch that generates ventilator-induced lung injury (VILI) occurs within the peripheral tissue that encloses the alveolar space, airway pressures and volumes monitor the gas within the interior core of the lung unit, not its cellular enclosure. Measured pressures (plateau pressure, positive end-expiratory pressure, and driving pressure) and tidal volumes paint a highly relevant but incomplete picture of forces that act on the lung tissues themselves. Convenient and clinically useful measures of the airspace, such as pressure and volume, neglect the partitioning of tidal elastic energy into the increments of tension and surface area that constitute actual stress and strain at the alveolar margins. More sharply focused determinants of VILI require estimates of absolute alveolar dimension and morphology and the lung's unstressed volume at rest. We present a highly simplified but informative mathematical model that translates the radial energy of pressure and volume of the airspace into its surface energy components. In doing so it elaborates conceptual relationships that highlight the forces tending to cause end-tidal hyperinflation of aerated units within the 'baby lung' of acute respiratory distress syndrome (ARDS).


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão , Respiração com Pressão Positiva/métodos , Volume de Ventilação Pulmonar , Síndrome do Desconforto Respiratório/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Respiração Artificial/métodos
7.
Crit Care ; 27(1): 157, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081517

RESUMO

At the bedside, assessing the risk of ventilator-induced lung injury (VILI) requires parameters readily measured by the clinician. For this purpose, driving pressure (DP) and end-inspiratory static 'plateau' pressure ([Formula: see text]) of the tidal cycle are unquestionably useful but lack key information relating to associated volume changes and cumulative strain. 'Mechanical power', a clinical term which incorporates all dissipated ('non-elastic') and conserved ('elastic') energy components of inflation, has drawn considerable interest as a comprehensive 'umbrella' variable that accounts for the influence of ventilating frequency per minute as well as the energy cost per tidal cycle. Yet, like the raw values of DP and [Formula: see text], the absolute levels of energy and power by themselves may not carry sufficiently precise information to guide safe ventilatory practice. In previous work we introduced the concept of 'damaging energy per cycle'. Here we describe how-if only in concept-the bedside clinician might gauge the theoretical hazard of delivered energy using easily observed static circuit pressures ([Formula: see text] and positive end expiratory pressure) and an estimate of the maximally tolerated (threshold) non-dissipated ('elastic') airway pressure that reflects the pressure component applied to the alveolar tissues. Because its core inputs are already in use and familiar in daily practice, the simplified mathematical model we propose here for damaging energy and power may promote deeper comprehension of the key factors in play to improve lung protective ventilation.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Volume de Ventilação Pulmonar , Síndrome do Desconforto Respiratório/complicações , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Modelos Teóricos
8.
Br J Anaesth ; 130(3): 360-367, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470747

RESUMO

BACKGROUND: Ventilatory ratio (VR) has been proposed as an alternative approach to estimate physiological dead space. However, the absolute value of VR, at constant dead space, might be affected by venous admixture and CO2 volume expired per minute (VCO2). METHODS: This was a retrospective, observational study of mechanically ventilated patients with acute respiratory distress syndrome (ARDS) in the UK and Italy. Venous admixture was either directly measured or estimated using the surrogate measure PaO2/FiO2 ratio. VCO2 was estimated through the resting energy expenditure derived from the Harris-Benedict formula. RESULTS: A total of 641 mechanically ventilated patients with mild (n=65), moderate (n=363), or severe (n=213) ARDS were studied. Venous admixture was measured (n=153 patients) or estimated using the PaO2/FiO2 ratio (n=448). The VR increased exponentially as a function of the dead space, and the absolute values of this relationship were a function of VCO2. At a physiological dead space of 0.6, VR was 1.1, 1.4, and 1.7 in patients with VCO2 equal to 200, 250, and 300, respectively. VR was independently associated with mortality (odds ratio [OR]=2.5; 95% confidence interval [CI], 1.8-3.5), but was not associated when adjusted for VD/VTphys, VCO2, PaO2/FiO2 (ORadj=1.2; 95% CI, 0.7-2.1). These three variables remained independent predictors of ICU mortality (VD/VTphys [ORadj=17.9; 95% CI, 1.8-185; P<0.05]; VCO2 [ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]; and PaO2/FiO2 (ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]). CONCLUSIONS: VR is a useful aggregate variable associated with outcome, but variables not associated with ventilation (VCO2 and venous admixture) strongly contribute to the high values of VR seen in patients with severe illness.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Estudos Retrospectivos , Síndrome do Desconforto Respiratório/terapia , Respiração , Itália , Espaço Morto Respiratório , Respiração Artificial
9.
Am J Respir Crit Care Med ; 206(8): 973-980, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608503

RESUMO

Rationale: Weaning from venovenous extracorporeal membrane oxygenation (VV-ECMO) is based on oxygenation and not on carbon dioxide elimination. Objectives: To predict readiness to wean from VV-ECMO. Methods: In this multicenter study of mechanically ventilated adults with severe acute respiratory distress syndrome receiving VV-ECMO, we investigated a variable based on CO2 elimination. The study included a prospective interventional study of a physiological cohort (n = 26) and a retrospective clinical cohort (n = 638). Measurements and Main Results: Weaning failure in the clinical and physiological cohorts were 37% and 42%, respectively. The main cause of failure in the physiological cohort was high inspiratory effort or respiratory rate. All patients exhaled similar amounts of CO2, but in patients who failed the weaning trial, [Formula: see text]e was higher to maintain the PaCO2 unchanged. The effort to eliminate one unit-volume of CO2, was double in patients who failed (68.9 [42.4-123] vs. 39 [20.1-57] cm H2O/[L/min]; P = 0.007), owing to the higher physiological Vd (68 [58.73] % vs. 54 [41.64] %; P = 0.012). End-tidal partial carbon dioxide pressure (PetCO2)/PaCO2 ratio was a clinical variable strongly associated with weaning outcome at baseline, with area under the receiver operating characteristic curve of 0.87 (95% confidence interval [CI], 0.71-1). Similarly, the PetCO2/PaCO2 ratio was associated with weaning outcome in the clinical cohort both before the weaning trial (odds ratio, 4.14; 95% CI, 1.32-12.2; P = 0.015) and at a sweep gas flow of zero (odds ratio, 13.1; 95% CI, 4-44.4; P < 0.001). Conclusions: The primary reason for weaning failure from VV-ECMO is high effort to eliminate CO2. A higher PetCO2/PaCO2 ratio was associated with greater likelihood of weaning from VV-ECMO.


Assuntos
Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Adulto , Dióxido de Carbono , Humanos , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia , Estudos Retrospectivos
10.
Crit Care Med ; 50(11): 1599-1606, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866650

RESUMO

OBJECTIVES: Head-elevated body positioning, a default clinical practice, predictably increases end-expiratory transpulmonary pressure and aerated lung volume. In acute respiratory distress syndrome (ARDS), however, the net effect of such vertical inclination on tidal mechanics depends upon whether lung recruitment or overdistension predominates. We hypothesized that in moderate to severe ARDS, bed inclination toward vertical unloads the chest wall but adversely affects overall respiratory system compliance (C rs ). DESIGN: Prospective physiologic study. SETTING: Two medical ICUs in the United States. PATIENTS: Seventeen patients with ARDS, predominantly moderate to severe. INTERVENTION: Patients were ventilated passively by volume control. We measured airway pressures at baseline (noninclined) and following bed inclination toward vertical by an additional 15°. At baseline and following inclination, we manually loaded the chest wall to determine if C rs increased or paradoxically declined, suggestive of end-tidal overdistension. MEASUREMENTS AND MAIN RESULTS: Inclination resulted in a higher plateau pressure (supineΔ: 2.8 ± 3.3 cm H 2 O [ p = 0.01]; proneΔ: 3.3 ± 2.5 cm H 2 O [ p = 0.004]), higher driving pressure (supineΔ: 2.9 ± 3.3 cm H 2 O [ p = 0.01]; proneΔ: 3.3 ± 2.8 cm H 2 O [ p = 0.007]), and lower C rs (supine Δ: 3.4 ± 3.7 mL/cm H 2 O [ p = 0.01]; proneΔ: 3.1 ± 3.2 mL/cm H 2 O [ p = 0.02]). Following inclination, manual loading of the chest wall restored C rs and driving pressure to baseline (preinclination) values. CONCLUSIONS: In advanced ARDS, bed inclination toward vertical adversely affects C rs and therefore affects the numerical values for plateau and driving tidal pressures commonly targeted in lung protective strategies. These changes are fully reversed with manual loading of the chest wall, suggestive of end-tidal overdistension in the upright position. Body inclination should be considered a modifiable determinant of transpulmonary pressure and lung protection, directionally similar to tidal volume and positive end-expiratory pressure.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia
11.
Crit Care ; 26(1): 201, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791021

RESUMO

BACKGROUND: Chest wall loading has been shown to paradoxically improve respiratory system compliance (CRS) in patients with moderate to severe acute respiratory distress syndrome (ARDS). The most likely, albeit unconfirmed, mechanism is relief of end-tidal overdistension in 'baby lungs' of low-capacity. The purpose of this study was to define how small changes of tidal volume (VT) and positive end-expiratory pressure (PEEP) affect CRS (and its associated airway pressures) in patients with ARDS who demonstrate a paradoxical response to chest wall loading. We hypothesized that small reductions of VT or PEEP would alleviate overdistension and favorably affect CRS and conversely, that small increases of VT or PEEP would worsen CRS. METHODS: Prospective, multi-center physiologic study of seventeen patients with moderate to severe ARDS who demonstrated paradoxical responses to chest wall loading. All patients received mechanical ventilation in volume control mode and were passively ventilated. Airway pressures were measured before and after decreasing/increasing VT by 1 ml/kg predicted body weight and decreasing/increasing PEEP by 2.5 cmH2O. RESULTS: Decreasing either VT or PEEP improved CRS in all patients. Driving pressure (DP) decreased by a mean of 4.9 cmH2O (supine) and by 4.3 cmH2O (prone) after decreasing VT, and by a mean of 2.9 cmH2O (supine) and 2.2 cmH2O (prone) after decreasing PEEP. CRS increased by a mean of 3.1 ml/cmH2O (supine) and by 2.5 ml/cmH2O (prone) after decreasing VT. CRS increased by a mean of 5.2 ml/cmH2O (supine) and 3.6 ml/cmH2O (prone) after decreasing PEEP (P < 0.01 for all). Small increments of either VT or PEEP worsened CRS in the majority of patients. CONCLUSION: Patients with a paradoxical response to chest wall loading demonstrate uniform improvement in both DP and CRS following a reduction in either VT or PEEP, findings in keeping with prior evidence suggesting its presence is a sign of end-tidal overdistension. The presence of 'paradox' should prompt re-evaluation of modifiable determinants of end-tidal overdistension, including VT, PEEP, and body position.


Assuntos
Síndrome do Desconforto Respiratório , Parede Torácica , Humanos , Respiração com Pressão Positiva , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar
12.
Respir Res ; 22(1): 214, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330283

RESUMO

BACKGROUND: We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). METHODS: Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer's lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH2O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH2O/min for 30 min) PEEP decrease from 9 to 3 cmH2O. Animals were then further ventilated for 10 min at PEEP = 3 cmH2O, euthanized, and their lungs and kidneys removed for molecular biology analysis. RESULTS: At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. CONCLUSION: In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.


Assuntos
Coração/fisiopatologia , Rim/fisiopatologia , Pulmão/fisiopatologia , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Coração/efeitos dos fármacos , Infusões Intravenosas , Rim/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/terapia , Lactato de Ringer/administração & dosagem , Lactato de Ringer/toxicidade , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
13.
Crit Care ; 25(1): 264, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321060

RESUMO

As exemplified by prone positioning, regional variations of lung and chest wall properties provide possibilities for modifying transpulmonary pressures and suggest that clinical interventions related to the judicious application of external pressure may yield benefit. Recent observations made in late-phase patients with severe ARDS caused by COVID-19 (C-ARDS) have revealed unexpected mechanical responses to local chest wall compressions over the sternum and abdomen in the supine position that challenge the clinician's assumptions and conventional bedside approaches to lung protection. These findings appear to open avenues for mechanism-defining research investigation with possible therapeutic implications for all forms and stages of ARDS.


Assuntos
COVID-19/terapia , Complacência Pulmonar , Decúbito Ventral , Humanos , Posicionamento do Paciente , Pressão , Síndrome do Desconforto Respiratório/virologia , Mecânica Respiratória
14.
Crit Care ; 25(1): 250, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271958

RESUMO

A personalized mechanical ventilation approach for patients with adult respiratory distress syndrome (ARDS) based on lung physiology and morphology, ARDS etiology, lung imaging, and biological phenotypes may improve ventilation practice and outcome. However, additional research is warranted before personalized mechanical ventilation strategies can be applied at the bedside. Ventilatory parameters should be titrated based on close monitoring of targeted physiologic variables and individualized goals. Although low tidal volume (VT) is a standard of care, further individualization of VT may necessitate the evaluation of lung volume reserve (e.g., inspiratory capacity). Low driving pressures provide a target for clinicians to adjust VT and possibly to optimize positive end-expiratory pressure (PEEP), while maintaining plateau pressures below safety thresholds. Esophageal pressure monitoring allows estimation of transpulmonary pressure, but its use requires technical skill and correct physiologic interpretation for clinical application at the bedside. Mechanical power considers ventilatory parameters as a whole in the optimization of ventilation setting, but further studies are necessary to assess its clinical relevance. The identification of recruitability in patients with ARDS is essential to titrate and individualize PEEP. To define gas-exchange targets for individual patients, clinicians should consider issues related to oxygen transport and dead space. In this review, we discuss the rationale for personalized approaches to mechanical ventilation for patients with ARDS, the role of lung imaging, phenotype identification, physiologically based individualized approaches to ventilation, and a future research agenda.


Assuntos
Medicina de Precisão/métodos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Humanos , Medicina de Precisão/tendências , Respiração Artificial/tendências , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/fisiopatologia , Mecânica Respiratória/fisiologia
15.
Am J Respir Crit Care Med ; 201(7): 767-774, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665612

RESUMO

Ventilation is inherently a dynamic process. The present-day clinical practice of concentrating on the static inflation characteristics of the individual tidal cycle (plateau pressure, positive end-expiratory pressure, and their difference [driving pressure, the ratio of Vt to compliance]) does not take into account key factors shown experimentally to influence ventilator-induced lung injury (VILI). These include rate of airway pressure change (influenced by flow amplitude, inspiratory time fraction, and inspiratory inflation contour) and cycling frequency. Energy must be expended to cause injury, and the product of applied stress and resulting strain determines the energy delivered to the lungs per breathing cycle. Understanding the principles of VILI energetics may provide valuable insights and guidance to intensivists for safer clinical practice. In this interpretive review, we highlight that the injuring potential of the inflation pattern depends upon tissue vulnerability, the number of intolerable high-energy cycles applied in unit time (mechanical power), and the duration of that exposure. Yet, as attractive as this energy/power hypothesis for encapsulating the drivers of VILI may be for clinical applications, we acknowledge that even these all-inclusive and measurable ergonomic parameters (energy per cycle and power) are still too bluntly defined to pinpoint the precise biophysical link between ventilation strategy and tissue injury.


Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Fenômenos Biofísicos , Humanos , Pressão , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
16.
Crit Care Med ; 48(8): 1203-1209, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32697492

RESUMO

OBJECTIVES: To examine the potentially modifiable drivers that injure and heal the "baby lung" of acute respiratory distress syndrome and describe a rational clinical approach to favor benefit. DATA SOURCES: Published experimental studies and clinical papers that address varied aspects of ventilator-induced lung injury pathogenesis and its consequences. STUDY SELECTION: Published information relevant to the novel hypothesis of progressive lung vulnerability and to the biophysical responses of lung injury and repair. DATA EXTRACTION: None. DATA SYNTHESIS: In acute respiratory distress syndrome, the reduced size and capacity for gas exchange of the functioning "baby lung" imply loss of ventilatory capability that dwindles in proportion to severity of lung injury. Concentrating the entire ventilation workload and increasing perfusion to these already overtaxed units accentuates their potential for progressive injury. Unlike static airspace pressures, which, in theory, apply universally to aerated structures of all dimensions, the components of tidal inflation that relate to power (which include frequency and flow) progressively intensify their tissue-stressing effects on parenchyma and microvasculature as the ventilated compartment shrinks further, especially during the first phase of the evolving injury. This "ventilator-induced lung injury vortex" of the shrinking baby lung is opposed by reactive, adaptive, and reparative processes. In this context, relatively little attention has been paid to the evolving interactions between lung injury and response and to the timing of interventions that worsen, limit or reverse a potentially accelerating ventilator-induced lung injury process. Although universal and modifiable drivers hold the potential to progressively injure the functional lung units of acute respiratory distress syndrome in a positive feedback cycle, measures can be taken to interrupt that process and encourage growth and healing of the "baby lung" of severe acute respiratory distress syndrome.


Assuntos
Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Progressão da Doença , Humanos , Pulmão/patologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/terapia , Fatores de Risco , Fatores de Tempo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
17.
Anesthesiology ; 132(5): 1257-1276, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32149776

RESUMO

This review focuses on the use of veno-venous extracorporeal membrane oxygenation for respiratory failure across all blood flow ranges. Starting with a short overview of historical development, aspects of the physiology of gas exchange (i.e., oxygenation and decarboxylation) during extracorporeal circulation are discussed. The mechanisms of phenomena such as recirculation and shunt playing an important role in daily clinical practice are explained.Treatment of refractory and symptomatic hypoxemic respiratory failure (e.g., acute respiratory distress syndrome [ARDS]) currently represents the main indication for high-flow veno-venous-extracorporeal membrane oxygenation. On the other hand, lower-flow extracorporeal carbon dioxide removal might potentially help to avoid or attenuate ventilator-induced lung injury by allowing reduction of the energy load (i.e., driving pressure, mechanical power) transmitted to the lungs during mechanical ventilation or spontaneous ventilation. In the latter context, extracorporeal carbon dioxide removal plays an emerging role in the treatment of chronic obstructive pulmonary disease patients during acute exacerbations. Both applications of extracorporeal lung support raise important ethical considerations, such as likelihood of ultimate futility and end-of-life decision-making. The review concludes with a brief overview of potential technical developments and persistent challenges.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Troca Gasosa Pulmonar/fisiologia , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Animais , Dióxido de Carbono/fisiologia , Circulação Extracorpórea/métodos , Humanos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
18.
Anesthesiology ; 132(5): 1126-1137, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032095

RESUMO

BACKGROUND: Excessive tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) are all potential causes of ventilator-induced lung injury, and all contribute to a single variable: the mechanical power. The authors aimed to determine whether high tidal volume or high respiratory rate or high PEEP at iso-mechanical power produce similar or different ventilator-induced lung injury. METHODS: Three ventilatory strategies-high tidal volume (twice baseline functional residual capacity), high respiratory rate (40 bpm), and high PEEP (25 cm H2O)-were each applied at two levels of mechanical power (15 and 30 J/min) for 48 h in six groups of seven healthy female piglets (weight: 24.2 ± 2.0 kg, mean ± SD). RESULTS: At iso-mechanical power, the high tidal volume groups immediately and sharply increased plateau, driving pressure, stress, and strain, which all further deteriorated with time. In high respiratory rate groups, they changed minimally at the beginning, but steadily increased during the 48 h. In contrast, after a sudden huge increase, they decreased with time in the high PEEP groups. End-experiment specific lung elastance was 6.5 ± 1.7 cm H2O in high tidal volume groups, 10.1 ± 3.9 cm H2O in high respiratory rate groups, and 4.5 ± 0.9 cm H2O in high PEEP groups. Functional residual capacity decreased and extravascular lung water increased similarly in these three categories. Lung weight, wet-to-dry ratio, and histologic scores were similar, regardless of ventilatory strategies and power levels. However, the alveolar edema score was higher in the low power groups. High PEEP had the greatest impact on hemodynamics, leading to increased need for fluids. Adverse events (early mortality and pneumothorax) also occurred more frequently in the high PEEP groups. CONCLUSIONS: Different ventilatory strategies, delivered at iso-power, led to similar anatomical lung injury. The different systemic consequences of high PEEP underline that ventilator-induced lung injury must be evaluated in the context of the whole body.


Assuntos
Modelos Animais , Respiração com Pressão Positiva/efeitos adversos , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Respiração com Pressão Positiva/métodos , Suínos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
19.
Crit Care ; 24(1): 284, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493362

RESUMO

BACKGROUND: We dissected total power into its primary components to resolve its relative contributions to tissue damage (VILI). We hypothesized that driving power or elastic (dynamic) power offers more precise VILI risk indicators than raw total power. The relative correlations of these three measures of power with VILI-induced histologic changes and injury biomarkers were determined using a rodent model of acute respiratory distress syndrome (ARDS). Herein, we have significantly extended the scope of our previous research. METHODS: Data analyses were performed in male Wistar rats that received endotoxin intratracheally to induce ARDS. After 24 h, they were randomized to 1 h of volume-controlled ventilation with low VT = 6 ml/kg and different PEEP levels (3, 5.5, 7.5, 9.5, and 11 cmH2O). Applied levels of driving power, dynamic power inclusive of PEEP, and total power were correlated with VILI indicators [lung histology and biological markers associated with inflammation (interleukin-6), alveolar stretch (amphiregulin), and epithelial (club cell protein (CC)-16) and endothelial (intercellular adhesion molecule-1) cell damage in lung tissue]. RESULTS: Driving power was higher at PEEP-11 than other PEEP levels. Dynamic power and total power increased progressively from PEEP-5.5 and PEEP-7.5, respectively, to PEEP-11. Driving power, dynamic power, and total power each correlated with the majority of VILI indicators. However, when correlations were performed from PEEP-3 to PEEP-9.5, no relationships were observed between driving power and VILI indicators, whereas dynamic power and total power remained well correlated with CC-16 expression, alveolar collapse, and lung hyperinflation. CONCLUSIONS: In this mild-moderate ARDS model, dynamic power, not driving power alone, emerged as the key promoter of VILI. Moreover, hazards from driving power were conditioned by the requirement to pass a tidal stress threshold. When estimating VILI hazard from repeated mechanical strains, PEEP must not be disregarded as a major target for modification.


Assuntos
Tecido Elástico/fisiopatologia , Síndrome do Desconforto Respiratório/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Animais , Modelos Animais de Doenças , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/fisiopatologia , Mecânica Respiratória/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
20.
Am J Respir Crit Care Med ; 200(5): 582-589, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985210

RESUMO

Rationale: Hyperlactatemia in sepsis may derive from a prevalent impairment of oxygen supply/demand and/or oxygen use. Discriminating between these two mechanisms may be relevant for the early fluid resuscitation strategy.Objectives: To understand the relationship among central venous oxygen saturation (ScvO2), lactate, and base excess to better determine the origin of lactate.Methods: This was a post hoc analysis of baseline variables of 1,741 patients with sepsis enrolled in the multicenter trial ALBIOS (Albumin Italian Outcome Sepsis). Variables were analyzed as a function of sextiles of lactate concentration and sextiles of ScvO2. We defined the "alactic base excess," as the sum of lactate and standard base excess.Measurements and Main Results: Organ dysfunction severity scores, physiologic variables of hepatic, metabolic, cardiac, and renal function, and 90-day mortality were measured. ScvO2 was lower than 70% only in 35% of patients. Mortality, organ dysfunction scores, and lactate were highest in the first and sixth sextiles of ScvO2. Although lactate level related strongly to mortality, it was associated with acidemia only when kidney function was impaired (creatinine >2 mg/dl), as rapidly detected by a negative alactic base excess. In contrast, positive values of alactic base excess were associated with a relative reduction of fluid balance.Conclusions: Hyperlactatemia is powerfully correlated with severity of sepsis and, in established sepsis, is caused more frequently by impaired tissue oxygen use, rather than by impaired oxygen transport. Concomitant acidemia was only observed in the presence of renal dysfunction, as rapidly detected by alactic base excess. The current strategy of fluid resuscitation could be modified according to the origin of excess lactate.


Assuntos
Acidose Láctica/fisiopatologia , Acidose Láctica/terapia , Biomarcadores/análise , Hidratação/métodos , Consumo de Oxigênio/fisiologia , Sepse/fisiopatologia , Sepse/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA