Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Hum Genet ; 110(7): 1138-1161, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339630

RESUMO

Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Alelos , Melanoma/genética , Melanoma/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Cutâneas/genética , Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/genética
2.
Am J Hematol ; 97(1): 18-29, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34677878

RESUMO

Septins play key roles in mammalian cell division and cytokinesis but have not previously been implicated in a germline human disorder. A male infant with severe neutropenia and progressive dysmyelopoiesis with tetraploid myeloid precursors was identified. No known genetic etiologies for neutropenia or bone marrow failure were found. However, next-generation sequencing of germline samples from the patient revealed a novel, de novo germline stop-loss mutation in the X-linked gene SEPT6 that resulted in reduced SEPT6 staining in bone marrow granulocyte precursors and megakaryocytes. Patient skin fibroblast-derived induced pluripotent stem cells (iPSCs) produced reduced myeloid colonies, particularly of the granulocyte lineage. CRISPR/Cas9 knock-in of the patient's mutation or complete knock-out of SEPT6 was not tolerated in non-patient-derived iPSCs or human myeloid cell lines, but SEPT6 knock-out was successful in an erythroid cell line and resulting clones revealed a propensity to multinucleation. In silico analysis predicts that the mutated protein hinders the dimerization of SEPT6 coiled-coils in both parallel and antiparallel arrangements, which could in turn impair filament formation. These data demonstrate a critical role for SEPT6 in chromosomal segregation in myeloid progenitors that can account for the unusual predisposition to aneuploidy and dysmyelopoiesis.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação em Linhagem Germinativa , Síndromes Mielodisplásicas/genética , Neutropenia/congênito , Septinas/genética , Linhagem Celular , Células Cultivadas , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Humanos , Recém-Nascido , Masculino , Síndromes Mielodisplásicas/complicações , Neutropenia/complicações , Neutropenia/genética , Tetraploidia
3.
Blood ; 132(13): 1399-1412, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-29898956

RESUMO

Unlike primary myelofibrosis (PMF) in adults, myelofibrosis in children is rare. Congenital (inherited) forms of myelofibrosis (cMF) have been described, but the underlying genetic mechanisms remain elusive. Here we describe 4 families with autosomal recessive inherited macrothrombocytopenia with focal myelofibrosis due to germ line loss-of-function mutations in the megakaryocyte-specific immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B (G6b, C6orf25, or MPIG6B). Patients presented with a mild-to-moderate bleeding diathesis, macrothrombocytopenia, anemia, leukocytosis and atypical megakaryocytes associated with a distinctive, focal, perimegakaryocytic pattern of bone marrow fibrosis. In addition to identifying the responsible gene, the description of G6b-B as the mutated protein potentially implicates aberrant G6b-B megakaryocytic signaling and activation in the pathogenesis of myelofibrosis. Targeted insertion of human G6b in mice rescued the knockout phenotype and a copy number effect of human G6b-B expression was observed. Homozygous knockin mice expressed 25% of human G6b-B and exhibited a marginal reduction in platelet count and mild alterations in platelet function; these phenotypes were more severe in heterozygous mice that expressed only 12% of human G6b-B. This study establishes G6b-B as a critical regulator of platelet homeostasis in humans and mice. In addition, the humanized G6b mouse will provide an invaluable tool for further investigating the physiological functions of human G6b-B as well as testing the efficacy of drugs targeting this receptor.


Assuntos
Mutação com Perda de Função , Mielofibrose Primária/congênito , Receptores Imunológicos/genética , Trombocitopenia/congênito , Adolescente , Adulto , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Criança , Pré-Escolar , Feminino , Técnicas de Introdução de Genes , Humanos , Lactente , Masculino , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Trombocitopenia/genética , Trombocitopenia/patologia , Adulto Jovem
4.
Am J Hum Genet ; 96(5): 709-19, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25865492

RESUMO

Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2's isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Microcefalia/genética , Doenças Mitocondriais/genética , Transtornos Psicomotores/genética , Pirrolina Carboxilato Redutases/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Feminino , Genótipo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Homozigoto , Humanos , Masculino , Microcefalia/patologia , Doenças Mitocondriais/patologia , Mutação , Fenótipo , Transtornos Psicomotores/patologia , delta-1-Pirrolina-5-Carboxilato Redutase
5.
Blood ; 128(15): 1913-1917, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27488349

RESUMO

The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited blood disorders characterized by pathological mitochondrial iron deposition in erythroid precursors. Each known cause has been attributed to a mutation in a protein associated with heme biosynthesis, iron-sulfur cluster biogenesis, mitochondrial translation, or a component of the mitochondrial respiratory chain. Here, we describe a recurring mutation, c.276_278del, p.F93del, in NDUFB11, a mitochondrial respiratory complex I-associated protein encoded on the X chromosome, in 5 males with a variably syndromic, normocytic CSA. The p.F93del mutation results in respiratory insufficiency and loss of complex I stability and activity in patient-derived fibroblasts. Targeted introduction of this allele into K562 erythroleukemia cells results in a proliferation defect with minimal effect on erythroid differentiation potential, suggesting the mechanism of anemia in this disorder.


Assuntos
Anemia Sideroblástica/genética , Sequência de Bases , Cromossomos Humanos X/genética , Complexo I de Transporte de Elétrons/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deleção de Sequência , Adolescente , Adulto , Idoso , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patologia , Criança , Pré-Escolar , Cromossomos Humanos X/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Células K562 , Masculino , Pessoa de Meia-Idade
6.
Blood ; 126(25): 2734-8, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26491070

RESUMO

The congenital sideroblastic anemias (CSAs) are relatively uncommon diseases characterized by defects in mitochondrial heme synthesis, iron-sulfur (Fe-S) cluster biogenesis, or protein synthesis. Here we demonstrate that mutations in HSPA9, a mitochondrial HSP70 homolog located in the chromosome 5q deletion syndrome 5q33 critical deletion interval and involved in mitochondrial Fe-S biogenesis, result in CSA inherited as an autosomal recessive trait. In a fraction of patients with just 1 severe loss-of-function allele, expression of the clinical phenotype is associated with a common coding single nucleotide polymorphism in trans that correlates with reduced messenger RNA expression and results in a pseudodominant pattern of inheritance.


Assuntos
Anemia Sideroblástica/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Mitocondriais/genética , Adulto , Idoso , Sequência de Bases , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
7.
Pediatr Blood Cancer ; 64(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27808451

RESUMO

Symptomatic ß-thalassemia is one of the globally most common inherited disorders. The initial clinical presentation is variable. Although common hematological analyses are typically sufficient to diagnose the disease, sometimes the diagnosis can be more challenging. We describe a series of patients with ß-thalassemia whose diagnosis was delayed, required bone marrow examination in one affected member of each family, and revealed ringed sideroblasts, highlighting the association of this morphological finding with these disorders. Thus, in the absence of characteristic congenital sideroblastic mutations or causes of acquired sideroblastic anemia, the presence of ringed sideroblasts should raise the suspicion of ß-thalassemia.


Assuntos
Anemia Sideroblástica/patologia , Células da Medula Óssea/patologia , Eritroblastos/patologia , Talassemia beta/patologia , Adolescente , Adulto , Anemia Sideroblástica/diagnóstico , Células da Medula Óssea/citologia , Exame de Medula Óssea , Criança , Eritroblastos/citologia , Eritrócitos Anormais , Feminino , Doenças Hematológicas/complicações , Humanos , Lactente , Masculino , Talassemia beta/diagnóstico
8.
Mol Ecol ; 25(7): 1494-510, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26846876

RESUMO

The recent discovery of a previously unknown genetic subgroup of Anopheles gambiae sensu lato underscores our incomplete understanding of complexities of vector population demographics in Anopheles. This subgroup, named GOUNDRY, does not rest indoors as adults and is highly susceptible to Plasmodium infection in the laboratory. Initial description of GOUNDRY suggested it differed from other known Anopheles taxa in surprising and sometimes contradictory ways, raising a number of questions about its age, population size and relationship to known subgroups. To address these questions, we sequenced the complete genomes of 12 wild-caught GOUNDRY specimens and compared these genomes to a panel of Anopheles genomes. We show that GOUNDRY is most closely related to Anopheles coluzzii, and the timing of cladogenesis is not recent, substantially predating the advent of agriculture. We find a large region of the X chromosome that has swept to fixation in GOUNDRY within the last 100 years, which may be an inversion that serves as a partial barrier to contemporary gene flow. Interestingly, we show that GOUNDRY has a history of inbreeding that is significantly associated with susceptibility to Plasmodium infection in the laboratory. Our results illuminate the genomic evolution of one of probably several cryptic, ecologically specialized subgroups of Anopheles and provide a potent example of how vector population dynamics may complicate efforts to control or eradicate malaria.


Assuntos
Anopheles/genética , Evolução Molecular , Genoma de Inseto , Plasmodium falciparum , Animais , Anopheles/parasitologia , Inversão Cromossômica , Fluxo Gênico , Especiação Genética , Genética Populacional , Endogamia , Insetos Vetores/genética , Insetos Vetores/parasitologia , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Análise de Sequência de DNA , Cromossomo X/genética
9.
Blood ; 124(18): 2867-71, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25193871

RESUMO

Mutations in genes encoding proteins that are involved in mitochondrial heme synthesis, iron-sulfur cluster biogenesis, and mitochondrial protein synthesis have previously been implicated in the pathogenesis of the congenital sideroblastic anemias (CSAs). We recently described a syndromic form of CSA associated with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Here we demonstrate that SIFD is caused by biallelic mutations in TRNT1, the gene encoding the CCA-adding enzyme essential for maturation of both nuclear and mitochondrial transfer RNAs. Using budding yeast lacking the TRNT1 homolog, CCA1, we confirm that the patient-associated TRNT1 mutations result in partial loss of function of TRNT1 and lead to metabolic defects in both the mitochondria and cytosol, which can account for the phenotypic pleiotropy.


Assuntos
Anemia Sideroblástica/congênito , Anemia Sideroblástica/genética , Deficiências do Desenvolvimento/complicações , Febre/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndromes de Imunodeficiência/complicações , Mutação/genética , RNA Nucleotidiltransferases/genética , Alelos , Anemia Sideroblástica/complicações , Anemia Sideroblástica/enzimologia , Deficiências do Desenvolvimento/genética , Febre/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Células HEK293 , Humanos , Síndromes de Imunodeficiência/genética
10.
BMC Genomics ; 16: 779, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26462916

RESUMO

BACKGROUND: The genome-wide association study (GWAS) techniques that have been used for genetic mapping in other organisms have not been successfully applied to mosquitoes, which have genetic characteristics of high nucleotide diversity, low linkage disequilibrium, and complex population stratification that render population-based GWAS essentially unfeasible at realistic sample size and marker density. METHODS: We designed a novel mapping strategy for the mosquito system that combines the power of linkage mapping with the resolution afforded by genetic association. We established founder colonies from West Africa, controlled for diversity, linkage disequilibrium and population stratification. Colonies were challenged by feeding on the infectious stage of the human malaria parasite, Plasmodium falciparum, mosquitoes were phenotyped for parasite load, and DNA pools for phenotypically similar mosquitoes were Illumina sequenced. Phenotype-genotype mapping was carried out in two stages, coarse and fine. RESULTS: In the first mapping stage, pooled sequences were analysed genome-wide for intervals displaying relativereduction in diversity between phenotype pools, and candidate genomic loci were identified for influence upon parasite infection levels. In the second mapping stage, focused genotyping of SNPs from the first mapping stage was carried out in unpooled individual mosquitoes and replicates. The second stage confirmed significant SNPs in a locus encoding two Toll-family proteins. RNAi-mediated gene silencing and infection challenge revealed that TOLL 11 protects mosquitoes against P. falciparum infection. CONCLUSIONS: We present an efficient and cost-effective method for genetic mapping using natural variation segregating in defined recent Anopheles founder colonies, and demonstrate its applicability for mapping in a complex non-model genome. This approach is a practical and preferred alternative to population-based GWAS for first-pass mapping of phenotypes in Anopheles. This design should facilitate mapping of other traits involved in physiology, epidemiology, and behaviour.


Assuntos
Anopheles/genética , Estudo de Associação Genômica Ampla , Malária Falciparum/genética , Plasmodium falciparum/genética , Receptores Toll-Like/genética , Animais , Anopheles/parasitologia , Mapeamento Cromossômico , Genoma de Inseto , Genótipo , Interações Hospedeiro-Parasita/genética , Humanos , Insetos Vetores/genética , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Fenótipo , Plasmodium falciparum/patogenicidade , Polimorfismo de Nucleotídeo Único
12.
Malar J ; 14: 391, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26445487

RESUMO

BACKGROUND: Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. It is known that a large haplotype shared between An. gambiae and Anopheles coluzzii by introgression carries point mutations of the voltage-gated sodium channel gene para, including the L1014F kdr mutation associated with insensitivity to pyrethroid insecticides. Carriage of L1014F kdr is also correlated with higher susceptibility to infection with Plasmodium falciparum. However, the genetic mechanism and causative gene(s) underlying the parasite susceptibility phenotype are not known. METHODS: Mosquitoes from the wild Burkina Faso population were challenged by feeding on natural P. falciparum gametocytes. Oocyst infection phenotypes were determined and were tested for association with SNP genotypes. Candidate genes in the detected locus were prioritized and RNAi-mediated gene silencing was used to functionally test for gene effects on P. falciparum susceptibility. RESULTS: A genetic locus, Pfin6, was identified that influences infection levels of P. falciparum in mosquitoes. The locus segregates as a ~3 Mb haplotype carrying 65 predicted genes including the para gene. The haplotype carrying the kdr allele of para is linked to increased parasite infection prevalence, but many single nucleotide polymorphisms on the haplotype are also equally linked to the infection phenotype. Candidate genes in the haplotype were prioritized and functionally tested. Silencing of para did not influence P. falciparum infection, while silencing of a predicted immune gene, serine protease ClipC9, allowed development of significantly increased parasite numbers. CONCLUSIONS: Genetic variation influencing Plasmodium infection in wild Anopheles is linked to a natural ~3 megabase haplotype on chromosome 2L that carries the kdr allele of the para gene. Evidence suggests that para gene function does not directly influence parasite susceptibility, and the association of kdr with infection may be due to tight linkage of kdr with other gene(s) on the haplotype. Further work will be required to determine if ClipC9 influences the outcome of P. falciparum infection in nature, as well as to confirm the absence of a direct influence by para.


Assuntos
Anopheles/genética , Anopheles/parasitologia , Loci Gênicos , Haplótipos , Resistência a Inseticidas , Plasmodium falciparum/crescimento & desenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Anopheles/imunologia , Burkina Faso , Feminino , Ligação Genética , Plasmodium falciparum/imunologia
13.
Am J Hematol ; 89(3): 315-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24166784

RESUMO

X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia. In affected males, it is uniformly associated with partial loss-of-function missense mutations in the erythroid-specific heme biosynthesis protein 5-aminolevulinate synthase 2 (ALAS2). Here, we report five families with XLSA owing to mutations in a GATA transcription factor binding site located in a transcriptional enhancer element in intron 1 of the ALAS2 gene. As such, this study defines a new class of mutations that should be evaluated in patients undergoing genetic testing for a suspected diagnosis of XLSA.


Assuntos
5-Aminolevulinato Sintetase/genética , Anemia Sideroblástica/genética , Elementos Facilitadores Genéticos/genética , Fatores de Transcrição GATA/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Íntrons/genética , Mutação , Adulto , Idoso , Anemia Sideroblástica/sangue , Sítios de Ligação , Europa (Continente)/etnologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
14.
Commun Biol ; 7(1): 418, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582945

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.


Assuntos
Distrofia Endotelial de Fuchs , Humanos , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Estudo de Associação Genômica Ampla , Fator de Transcrição 4/genética , Colágeno , Laminina/genética
15.
PLoS One ; 18(2): e0274339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827430

RESUMO

We present allele frequencies of pharmacogenomics relevant variants across multiple ancestry in a sample representative of the US population. We analyzed 658,582 individuals with genotype data and extracted pharmacogenomics relevant single nucleotide variant (SNV) alleles, human leukocyte antigens (HLA) 4-digit alleles and an important copy number variant (CNV), the full deletion/duplication of CYP2D6. We compiled distinct allele frequency tables for European, African American, Hispanic, and Asian ancestry individuals. In addition, we compiled allele frequencies based on local ancestry reconstruction in the African-American (2-way deconvolution) and Hispanic (3-way deconvolution) cohorts.


Assuntos
Farmacogenética , Veteranos , Humanos , Alelos , Frequência do Gene , Genótipo
16.
Res Sq ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205546

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular pathophysiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program (MVP) and meta-analyzed with the previous largest FECD GWAS, finding twelve significant loci (eight novel). We further confirmed the TCF4 locus in admixed African and Hispanic/Latino ancestries, and found an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and co-localization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.

18.
Pediatr Res ; 68(5): 409-13, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20661167

RESUMO

Dysfunction of medullary serotonin (5-HT)-mediated respiratory and autonomic function is postulated to underlie the pathogenesis of the majority of sudden infant death syndrome (SIDS) cases. Several studies have reported an increased frequency of the LL genotype and L allele of the 5-HT transporter (5-HTT) gene promoter polymorphism (5-HTTLPR), which is associated with increased transcriptional activity and 5-HT transport in vitro, in SIDS cases compared with controls. These findings raise the possibility that this polymorphism contributes to or exacerbates existing medullary 5-HT dysfunction in SIDS. In this study, we tested the hypothesis that the frequency of LL genotype and L allele are higher in 179 SIDS cases compared with 139 controls of multiple ethnicities in the San Diego SIDS Dataset. We observed no significant association of genotype or allele with SIDS cases either in the total cohort or on stratification for ethnicity. These observations do not support previous findings that the L allele and/or LL genotype of the 5-HTTLPR are associated with SIDS.


Assuntos
Bases de Dados Factuais , Polimorfismo Genético , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Morte Súbita do Lactente/genética , California , Feminino , Frequência do Gene , Genótipo , Humanos , Lactente , Masculino , Serotonina/metabolismo
19.
Sci Rep ; 10(1): 14045, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820185

RESUMO

More than 98% of the human genome is made up of non-coding DNA, but techniques to ascertain its contribution to human disease have lagged far behind our understanding of protein coding variations. Autism spectrum disorder (ASD) has been mostly associated with coding variations via de novo single nucleotide variants (SNVs), recessive/homozygous SNVs, or de novo copy number variants (CNVs); however, most ASD cases continue to lack a genetic diagnosis. We analyzed 187 consanguineous ASD families for biallelic CNVs. Recessive deletions were significantly enriched in affected individuals relative to their unaffected siblings (17% versus 4%, p < 0.001). Only a small subset of biallelic deletions were predicted to result in coding exon disruption. In contrast, biallelic deletions in individuals with ASD were enriched for overlap with regulatory regions, with 23/28 CNVs disrupting histone peaks in ENCODE (p < 0.009). Overlap with regulatory regions was further demonstrated by comparisons to the 127-epigenome dataset released by the Roadmap Epigenomics project, with enrichment for enhancers found in primary brain tissue and neuronal progenitor cells. Our results suggest a novel noncoding mechanism of ASD, describe a powerful method to identify important noncoding regions in the human genome, and emphasize the potential significance of gene activation and regulation in cognitive and social function.


Assuntos
Transtorno do Espectro Autista/genética , Epigênese Genética , Deleção de Genes , Homozigoto , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Humanos , Masculino
20.
Pediatr Res ; 66(6): 631-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19707175

RESUMO

An important subset of the sudden infant death syndrome (SIDS) is associated with multiple serotonergic (5-HT) abnormalities in regions of the medulla oblongata. The mouse ortholog of the fifth Ewing variant gene (FEV) is critical for 5-HT neuronal development. A putatively rare intronic variant [IVS2-191_190insA, here referred to as c.128-(191_192)dupA] has been reported as a SIDS-associated mutation in an African-American population. We tested this association in an independent dataset: 137 autopsied cases (78 SIDS, 59 controls) and an additional 296 control DNA samples from Coriell Cell Repositories. In addition to the c.128-(191_192)dupA variant, we observed an associated single-base deletion [c.128-(301-306)delG] in a subset of the samples. Neither of the two FEV variants showed significant association with SIDS in either the African-American subgroup or the overall cohort. Although we found a significant association of c.128-(191_192)dupA with SIDS when San Diego Hispanic SIDS cases were compared with San Diego Hispanic controls plus Mexican controls (p = 0.04), this became nonsignificant after multiple testing correction. Among Coriell controls, 33 of 99 (33%) African-American and 0 of 197 (0%) of the remaining controls carry the polymorphism (c.128-(191_192)dupA). The polymorphism seems to be a common, likely nonpathogenic, variant in the African-American population.


Assuntos
Negro ou Afro-Americano/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Mutação INDEL/genética , Proteínas Nucleares/genética , Morte Súbita do Lactente/genética , Primers do DNA/genética , Feminino , Frequência do Gene , Haplótipos/genética , Humanos , Lactente , Íntrons/genética , Masculino , Bulbo/citologia , Neurônios/citologia , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Serotonina/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA