Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(48): 15898-911, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25429132

RESUMO

Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca(2+) signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca(2+) signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca(2+) signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca(2+) signaling in pyramidal neurons, with implications for cortical function and disease.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Espinhas Dendríticas/fisiologia , Inibição Neural/fisiologia , Receptores de GABA-A/fisiologia , Animais , Dendritos/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Cell Rep ; 22(3): 679-692, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29346766

RESUMO

Excitation and inhibition are highly specific in the cortex, with distinct synaptic connections made onto subtypes of projection neurons. The functional consequences of this selective connectivity depend on both synaptic strength and the intrinsic properties of targeted neurons but remain poorly understood. Here, we examine responses to callosal inputs at cortico-cortical (CC) and cortico-thalamic (CT) neurons in layer 5 of mouse prelimbic prefrontal cortex (PFC). We find callosally evoked excitation and feedforward inhibition are much stronger at CT neurons compared to neighboring CC neurons. Elevated inhibition at CT neurons reflects biased synaptic inputs from parvalbumin and somatostatin positive interneurons. The intrinsic properties of postsynaptic targets equalize excitatory and inhibitory response amplitudes but selectively accelerate decays at CT neurons. Feedforward inhibition further reduces response amplitude and balances action potential firing across these projection neurons. Our findings highlight the synaptic and cellular mechanisms regulating callosal recruitment of layer 5 microcircuits in PFC.


Assuntos
Corpo Caloso/fisiopatologia , Inibição Neural/genética , Córtex Pré-Frontal/fisiopatologia , Animais , Camundongos , Camundongos Transgênicos
3.
Neuron ; 98(2): 366-379.e4, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29628187

RESUMO

Reciprocal interactions between the prefrontal cortex (PFC) and thalamus play a critical role in cognition, but the underlying circuits remain poorly understood. Here we use optogenetics to dissect the specificity and dynamics of cortico-thalamo-cortical networks in the mouse brain. We find that cortico-thalamic (CT) neurons in prelimbic PFC project to both mediodorsal (MD) and ventromedial (VM) thalamus, where layer 5 and 6 inputs activate thalamo-cortical (TC) neurons with distinct temporal profiles. We show that TC neurons in MD and VM in turn make distinct connections in PFC, with MD preferentially and strongly activating layer 2/3 cortico-cortical (CC) neurons. Finally, we assess local connections from superficial CC to deep CT neurons, which link thalamo-cortical and cortico-thalamic networks within the PFC. Together our findings indicate that PFC strongly drives neurons in the thalamus, whereas MD and VM indirectly influence reciprocally connected neurons in the PFC, providing a mechanistic understanding of these circuits.


Assuntos
Núcleo Mediodorsal do Tálamo/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Núcleo Mediodorsal do Tálamo/química , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Optogenética/métodos , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/química , Núcleos Ventrais do Tálamo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA