RESUMO
An Addendum to this paper has been published: https://doi.org/10.1038/s41589-021-00741-6.
RESUMO
Cytomegalovirus (CMV) infection is the most frequent infection episode in kidney transplant (KT) recipients. Reactivation usually occurs in the first three months after transplantation and is associated with higher cellular and/or antibody-mediated rejection rates and poorer graft performance. CMV induces the expression of BAFF (B-cell-activating factor, a cytokine involved in the homeostasis of B cells), which communicates signals for survival and growth to B cells and virus-specific plasma cells via the R-BAFF (BAFF receptor), TACI (the calcium modulator, the cyclophilin ligand interactor), and BCMA (B cell maturation antigen) receptors. These molecules of the BAFF system have also been suggested as biomarkers for the development of alloantibodies and graft dysfunction. This prospective study included 30 CMV-IgG seropositive KT recipients. The expression levels of the genes BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA) in peripheral blood leukocytes (PBL) pre-KT were determined using qPCR. qPCR was also used to monitor CMV reactivation in the first three months following KT. The remainder of the KT recipients were classified as CMV- reactivation, and those with more than 500 copies/mL in at least one sample were classified as CMV+ reactivation. There were no discernible variations in the BAFF-R and TACI transcript expression levels. In the CMV+ group, we examined the relationship between the transcript levels and peak viremia. Peak viremia levels and BCMA transcript levels showed a strong correlation. BAFF-R and TACI expressions showed no measurable differences. In patients with early CMV reactivation, high BCMA receptor expression was associated with increased plasmablast, lymphocyte B cell class-switched levels (LBCS), and viral load. Our findings demonstrate that pre-KT BCMA transcript levels increased in KT recipients with early CMV reactivation. These transcript levels positively correlate with peak viremia and weakly with plasmablast and LBCS levels in PBLs.
Assuntos
Antígeno de Maturação de Linfócitos B , Citomegalovirus , Humanos , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Estudos Prospectivos , Viremia , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Fator Ativador de Células B/genética , Imunoglobulina GRESUMO
The process and evolution of an organ transplant procedure has evolved in terms of the prevention of immunological rejection with the improvement in the determination of immune response genes. These techniques include considering more important genes, more polymorphism detection, more refinement of the response motifs, as well as the analysis of epitopes and eplets, its capacity to fix complement, the PIRCHE algorithm and post-transplant monitoring with promising new biomarkers that surpass the classic serum markers such as creatine and other similar parameters of renal function. Among these new biomarkers, we analyze new serological, urine, cellular, genomic and transcriptomic biomarkers and computational prediction, with particular attention to the analysis of donor free circulating DNA as an optimal marker of kidney damage.
Assuntos
Ácidos Nucleicos Livres , Transplante de Rim , Transplante de Órgãos , Biomarcadores , Doadores de Tecidos , Rejeição de EnxertoRESUMO
Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1ß, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1ß release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.
Assuntos
Aquaporina 3/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aquaporina 3/antagonistas & inibidores , Aquaporina 3/genética , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Glicerol/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nigericina/farmacologia , Compostos Organoáuricos/química , Compostos Organoáuricos/metabolismo , Potássio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
NLRP3 (NOD-like receptor pyrin domain-containing protein 3) is an innate immune sensor that contributes to the development of different diseases, including monogenic autoinflammatory syndromes, gout, atherosclerosis, and Alzheimer's disease. The molecule sulfonylurea MCC950 is a NLRP3 inflammasome inhibitor with potential clinical utility. However, the mechanism of action of MCC950 remains unknown. Here, we characterize the mechanism of action of MCC950 in both wild-type and autoinflammatory-related NLRP3 mutants, and demonstrate that MCC950 closes the 'open' conformation of active NLRP3.
Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Furanos , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Indenos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Conformação Proteica , Sulfonamidas , Sulfonas/químicaRESUMO
Primary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings. The RNA sequencing revealed an interleukin 1 beta (IL1B) signature in patients with primary progressive multiple sclerosis. Subsequent immunophenotyping pointed to blood monocytes as responsible for the IL1B signature observed in this group of patients. Functional experiments at baseline measuring apoptosis-associated speck-like protein containing a CARD (ASC) speck formation showed that the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome was overactive in monocytes from patients with primary progressive multiple sclerosis, and canonical NLRP3 inflammasome activation with a combination of ATP plus lipopolysaccharide was associated with increased IL1B production in this group of patients. Primary progressive multiple sclerosis patients with high IL1B gene expression levels in peripheral blood mononuclear cells progressed significantly faster compared to patients with low IL1B levels based on the time to reach an EDSS of 6.0 and the Multiple Sclerosis Severity Score. In agreement with peripheral blood findings, both NLRP3 and IL1B expression in brain tissue from patients with primary progressive multiple sclerosis was mainly restricted to cells of myeloid lineage. Treatment of mice with a specific NLRP3 inflammasome inhibitor attenuated established experimental autoimmune encephalomyelitis disease severity and improved CNS histopathology. NLRP3 inflammasome-specific inhibition was also effective in reducing axonal damage in a model of lipopolysaccharide-neuroinflammation using organotypic cerebellar cultures. Altogether, these results point to a role of IL1B and the NLRP3 inflammasome as prognostic biomarker and potential therapeutic target, respectively, in patients with primary progressive multiple sclerosis.
Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Adulto , Animais , Biomarcadores/análise , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PrognósticoRESUMO
Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.
Assuntos
Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Mutação , Fosfolipase C gama/genética , Adolescente , Agamaglobulinemia/terapia , Autoimunidade/genética , Biomarcadores , Caspase 1/metabolismo , Criança , Citocinas/metabolismo , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Hereditárias Autoinflamatórias/terapia , Humanos , Inflamassomos/metabolismo , Masculino , Linhagem , Fenótipo , Fosfolipase C gama/química , Fosfolipase C gama/metabolismo , Relação Estrutura-AtividadeRESUMO
Macrophages play an important role in the inflammatory response. Their various biological functions are induced by different membrane receptors, including Toll-like receptors, which trigger several intracellular signaling cascades and activate the inflammasomes, which in turn elicit the release of inflammatory mediators such as cytokines. In this study, we present a novel method for the isolation of human mature peritoneal macrophages. This method can be easily implemented by gynecologists who routinely perform laparoscopy for sterilization by tubal ligation or surgically intervene in benign gynecological pathologies. Our method confirms that macrophages are the main peritoneal leukocyte subpopulation isolated from the human peritoneum in homeostasis. We showed that primary human peritoneal macrophages present phagocytic and oxidative activities, and respond to activation of the main proinflammatory pathways such as Toll-like receptors and inflammasomes, resulting in the secretion of different proinflammatory cytokines. Therefore, this method provides a useful tool for characterizing primary human macrophages as control cells for studies of molecular inflammatory pathways in steady-state conditions and for comparing them with those obtained from pathologies involving the peritoneal cavity. Furthermore, it will facilitate advances in the screening of anti-inflammatory compounds in the human system.
Assuntos
Técnicas de Cultura de Células/métodos , Citocinas/metabolismo , Inflamassomos/metabolismo , Leucócitos/metabolismo , Macrófagos Peritoneais/metabolismo , Adulto , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Laparoscopia , Macrófagos Peritoneais/citologia , Fagocitose , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1ß release in human blood mononuclear cells. Using HEK293 cells transfected with Toll-like receptor 4 (TLR4) and its co-receptor Myeloid Differentiation 2 (MD2), we demonstrate that unsaturated CLs compete with LPS for binding TLR4/MD2 preventing its activation, whereas saturated CLs are TLR4/MD2 agonists. As a consequence, saturated CLs induce a pro-inflammatory response in macrophages characterized by TNF-α and IP-10 secretion, and activate the alternative NLRP3 inflammasome pathway in human blood-derived monocytes. Thus, we identify that double bonds discriminate between anti- and pro-inflammatory properties of tetra-acylated molecules, providing a rationale for the development of TLR4 activators and inhibitors for use as vaccine adjuvants or in the treatment of TLR4-related diseases.
Assuntos
Cardiolipinas/farmacologia , Macrófagos/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Ligação Competitiva , Cardiolipinas/química , Cardiolipinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL10/metabolismo , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
In the published article, the Fig. 2 was published incorrectly. The correct Fig. 2 is given below.
RESUMO
OBJECTIVE: Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND) is a recently described monogenic autoinflammatory disease. The causal p.S242R MEFV mutation disrupts a binding motif of the regulatory 14-3-3 proteins within pyrin. Here, we investigate a family with clinical features consistent with PAAND in whom the novel p.E244K MEFV mutation, located in the +2 site of the 14-3-3 binding motif in pyrin, has been found. METHODS: Multiplex cytokine analyses were performed on p.E244K patient and control serum. Peripheral blood mononuclear cells were stimulated ex vivo with lipopolysaccharide (LPS). In vitro, inflammasome complex formation was evaluated by flow cytometry of Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC) specks. Interleukin-1ß (IL-1ß) and IL-18 production was quantified by ELISA. The ability of the p.E244K pyrin mutation to interact with 14-3-3 was assessed by immunoprecipitation. RESULTS: PAAND p.E244K patient serum displayed a different cytokine profile compared with patients with Familial Mediterranean Fever (FMF). In overexpression models, p.E244K pyrin was associated with decreased 14-3-3 binding and increased ASC speck formation. THP-1 monocytes expressing PAAND pyrin mutations demonstrated spontaneous caspase-1-dependent IL-1ß and IL-18 secretion, as well as cell death, which were significantly greater than those of wild-type and the FMF-associated mutation p.M694V. CONCLUSION: In PAAND, disruption of the +2 position of a 14-3-3 binding motif in pyrin results in its constitutive activation, with spontaneous production of IL-1ß and IL-18, associated with inflammatory cell death. The altered serum cytokine profile may explain the different clinical features exhibited by PAAND patients compared with those with FMF.
Assuntos
Proteínas 14-3-3/sangue , Febre Familiar do Mediterrâneo/sangue , Doenças Hereditárias Autoinflamatórias/sangue , Pirina/sangue , Síndrome de Sweet/sangue , Estudos de Casos e Controles , Caspase 1/metabolismo , Citocinas/sangue , Diagnóstico Diferencial , Febre Familiar do Mediterrâneo/diagnóstico , Febre Familiar do Mediterrâneo/genética , Citometria de Fluxo , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/administração & dosagem , Mutação , Ligação Proteica , Síndrome de Sweet/diagnóstico , Síndrome de Sweet/genéticaRESUMO
INTRODUCTION: Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Measurable residual disease (MRD, previously named minimal residual disease) study can guide therapy adjustments or preemptive interventions that might avoid hematological relapse. METHODS: Clinical decision making and patient outcome were evaluated in 80 real-life childhood ALL patients, according to the results observed in 544 bone marrow samples analyzed with three MRD methods: multiparametric flow cytometry (MFC), fluorescent in-situ hybridization (FISH) on B or T-purified lymphocytes and patient-specific nested reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Estimated 5 year overall survival and event-free survival were 94% and 84.1%, respectively. A total of 12 relapses in 7 patients were associated with positive MRD detection with at least one of the three methods: MFC (p < 0.00001), FISH (p < 0.00001) and RT-PCR (p = 0.013). MRD assessment allowed the anticipation of relapse and adapted early interventions with different approaches including chemotherapy intensification, blinatumomab, HSCT and targeted therapy to halt relapse in five patients, although two of them relapsed afterwards. CONCLUSION: MFC, FISH and RT-PCR are complementary methods for MRD monitoring in pediatric ALL. Although, our data clearly show that MDR positive detection is associated with relapse, continuation of standard treatment, intensification or other early interventions were able to halt relapse in patients with different risks and genetic background. More sensitive and specific methods are warranted to enhance this approach. However, whether early treatment of MRD can improve overall survival in patients with childhood ALL needs to be evaluated in adequately controlled clinical trials.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva , Citometria de Fluxo/métodosRESUMO
Natural killer and CD8(+) T cells are believed to be involved in the immune protection against melanoma. Their function may be regulated by a group of receptors defined as killer immunoglobulin-like receptors (KIRs) and their cognate HLA class I ligands. In this study, we analyzed the influence of KIR genes and KIR/HLA-I combinations on melanoma susceptibility and/or prognosis in a Spanish Caucasian population. For this purpose, KIR genotyping by PCR-SSP and HLA-C genotyping by reverse PCR-SSO were performed in 187 melanoma patients and 200 matched controls. We found a significantly low frequency of KIR2DL3 in nodular melanoma (NM) patients (P = 0.001) and in ulcerated melanoma patients (P < 0.0001). Similarly, the KIR2DL3/C1 combination was significantly decreased in melanoma patients (Pc = 0.008) and in patients with sentinel lymph node (SLN) melanoma metastasis (Pc = 0.002). Multivariate logistic regression models showed that KIR2DL3 behaves as a protective marker for NM and ulcerated melanoma (P = 0.02, odds ratio (OR) = 0.14 and P = 0.04, OR = 0.28, respectively), whereas the KIR2DL3/C1 pair acts as a protective marker for melanoma (P = 0.017, OR = 0.54), particularly superficial spreading melanoma (P = 0.02, OR = 0.52), and SLN metastasis (P = 0.0004, OR = 0.14). In contrast, the KIR2DL3(-)/C1C2 genotype seems to be correlated with NM and ulceration. We also report that the KIR2DL1(+)/S1(-)/C2C2 genotype is associated with susceptibility to melanoma and SLN metastasis. Altogether, the study of KIR2D genes and HLA-C ligands may help in assessing cutaneous melanoma risk and prognosis.
Assuntos
Biomarcadores Tumorais/genética , Predisposição Genética para Doença , Variação Genética/genética , Antígenos HLA-C/genética , Melanoma/genética , Receptores KIR2DL3/genética , Neoplasias Cutâneas/genética , Feminino , Genótipo , Humanos , Metástase Linfática , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Prognóstico , Neoplasias Cutâneas/secundárioRESUMO
Alpha-1 antitrypsin (AAT1) deficiency (AAT1D) is an inherited disease with an increased risk of chronic obstructive pulmonary disease (COPD), liver disease, and skin and blood vessel problems. AAT1D is caused by mutations in the SERPINE1 gene (Serine Protease Inhibitor, group A, member 1). Numerous variants of this gene, the Pi system, have been identified. The most frequent allelic variants are Pi*M, Pi*S, and Pi*Z. The development of COPD requires both a genetic predisposition and the contribution of an environmental factor, smoking being the most important. Studies on this deficiency worldwide are very scarce, and it is currently considered a rare disease because it is underdiagnosed. The aim of this study was to analyze the genotypic frequencies of mutations associated with AAT1 deficiency in unrelated bone marrow donors from the donor registry of the Region of Murcia in southeastern Spain due to the high risk of presenting with different pathologies and underdiagnosis in the population. A total of 112 DNA-healthy voluntary unrelated bone marrow donors from different parts of the Region of Murcia were analyzed retrospectively. AAT1 deficiency patient testing involved an automated biochemical screening routine. The three main variants, Pi*M, Pi*Z, and Pi*S, were analyzed in the SERPINE1 gene. Our results showed a frequency of 3.12% of the Pi*Z (K342) mutation in over 224 alleles tested in the healthy population. The frequency of Pi*S (V264) was 11.1%. The frequency of the haplotype with the most dangerous mutation, EK342 EE264, was 4.46%, and the frequency of EK342 EV264 was 1.78% in the healthy population. Frequencies of other EE342 EV264-mutated haplotypes accounted for 18.7%. As for the EE342 VV264 haplotype, 0.89% of the total healthy population presented heterozygous for the EV264 mutation and one individual presented homozygous for the VV264 mutation. In conclusion, the frequencies of Pi mutations in the healthy population of the Region of Murcia were not remarkably different from the few studies reported in Spain. The genotype and haplotype frequencies followed the usual pattern. Health authorities should be aware of this high prevalence of the Pi*S allelic variant and pathological genotypes such as Pi*MZ and Pi*SZ in the healthy population if they consider screening the smoking population.
RESUMO
BACKGROUND: T cells play a fundamental role in the processes that mediate graft rejection, tolerance, and defense against infections. The CXCR3 and CCR6 receptors, highly expressed in Th1 (type 1 T helper cells)/Tc1 (T cytotoxic cells, type 1), Th1-Tc1, and Th17-Tc17 lymphocytes, respectively, participate in cell migration toward inflamed tissues. The altered expression level of CXCR3 and CCR6 has been associated with different clinical events after renal transplantation, such as acute rejection (AR) and chronic graft dysfunction, but data are still limited. In this study, we evaluated the expression of the receptor CXCR3 and CCR6 in peripheral blood T lymphocytes from kidney transplant recipients (KTR) and their association with viral infections, AR, and allograft function. METHODS: Through flow cytometry, the peripheral blood expression of CXCR3 and CCR6 in T cells was evaluated in a pretransplant collection of KTR. The levels of these T subpopulations and their association with the incidence of AR, kidney graft function, viral infections, cytomegalovirus, and BK virus were studied. Adverse clinical events and graft function were monitored during the first year post transplant. RESULTS: KTRs with low pretransplantation levels of Th17 (CD4+CXCR3-CCR6+) (tertile 1, Th17<16.4%) had a higher risk of suffering AR during the first year post transplantation (P = .033). KTRs with viral infections or reactivations during the first 3 months post transplantation had significantly lower levels of Tc17 (CD8+CXCR3-CCR6+) and higher levels of Th1 (CD4+CXCR3+CCR6-). In patients with cytomegalovirus reactivations, the viral peak correlates negatively with the pretransplant levels of Th1 (r = -0.606, P = .037). CONCLUSIONS: Pretransplantation assessment of Th1-Th17 and Tc1-Tc17 levels may help predict post-transplant clinical events such as AR and reactivation of viral infections.
Assuntos
Transplante de Rim , Receptores CCR6 , Receptores CXCR3 , Células Th1 , Transplantados , Humanos , Relevância Clínica , Rim/metabolismo , Transplante de Rim/efeitos adversos , Receptores CCR6/metabolismo , Células Th17 , Transplante HomólogoRESUMO
In kidney transplantation, a biopsy is currently the gold standard for monitoring the transplanted organ. However, this is far from an ideal screening method given its invasive nature and the discomfort it can cause the patient. Large-scale studies in renal transplantation show that approximately 1% of biopsies generate major complications, with a risk of macroscopic hematuria greater than 3.5%. It would not be until 2011 that a method to detect donor-derived cell-free DNA (dd-cfDNA) employing digital PCR was devised based on analyzing the differences in SNPs between the donor and recipient. In addition, since the initial validation studies were carried out at the specific moments in which rejection was suspected, there is still not a good understanding of how dd-cfDNA levels naturally evolve post-transplant. In addition, various factors, both in the recipient and the donor, can influence dd-cfDNA levels and cause increases in the levels of dd-cfDNA themselves without suspicion of rejection. All that glitters in this technology is not gold; therefore, in this article, we discuss the current state of clinical studies, the benefits, and disadvantages.
RESUMO
Inflammation is a tightly coordinated response of the host immune system to bacterial and viral infections, triggered by the production of inflammatory cytokines. Sepsis is defined as a systemic inflammatory response followed by immunosuppression of the host and organ dysfunction. This imbalance of the immune response increases the risk of mortality of patients with sepsis, making it a major problem for critical care units worldwide. The P2X7 receptor plays a crucial role in activating the immune system by inducing the activation of peripheral blood mononuclear cells. In this study, we analyzed a cohort of abdominal origin septic patients and found that the expression of the P2X7 receptor in the plasma membrane is elevated in the different subsets of lymphocytes. We observed a direct relationship between the percentage of P2X7-expressing lymphocytes and the early inflammatory response in sepsis. Additionally, in patients whose lymphocytes presented a higher percentage of P2X7 surface expression, the total lymphocytes populations proportionally decreased. Furthermore, we found a correlation between elevated soluble P2X7 receptors in plasma and inflammasome-dependent cytokine IL-18. In summary, our work demonstrates that P2X7 expression is highly induced in lymphocytes during sepsis, and this correlates with IL-18, along with other inflammatory mediators such as IL-6, IL-8, and procalcitonin.
Assuntos
Interleucina-18 , Sepse , Humanos , Citocinas/metabolismo , Interleucina-18/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismoRESUMO
Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1ß release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1ß release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers.
Assuntos
Inflamassomos , Leucemia Mielomonocítica Crônica , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/genética , Carga de Sintomas , Interleucina-1/metabolismoRESUMO
Inflammasomes are multiprotein complexes that critically control different aspects of innate and adaptive immunity. Upon activation, inflammasome proteins oligomerize forming scaffolds to nucleate the apoptosis-associated speck-like protein containing a CARD (ASC) in filaments that will finally result in large ASC oligomers that are commonly named as ASC specks. In this chapter, we present a method to monitor NLRP3 or pyrin inflammasome activation in human monocytes upon extracellular ATP or Clostridium difficile toxin B treatment, respectively, by detecting intracellular oligomers of ASC by flow cytometry. This method could be used to evaluate the degree of inflammasome activation in blood samples from patients suffering from different chronic inflammatory diseases.