Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638651

RESUMO

The telomeric transcriptome of Chironomus riparius has been involved in thermal stress response. One of the telomeric transcripts, the so-called CriTER-A variant, is highly overexpressed upon heat shock. On the other hand, its homologous variant CriTER-B, which is the most frequently encoded noncoding RNA in the telomeres of C. riparius, is only slightly affected by thermal stress. Interestingly, both transcripts show high sequence homology, but less is known about their folding and how this could influence their differential behaviour. Our study suggests that CriTER-A folds as two different conformers, whose relative proportion is influenced by temperature conditions. Meanwhile, the CriTER-B variant shows only one dominant conformer. Thus, a temperature-dependent conformational equilibrium can be established for CriTER-A, suggesting a putative functional role of the telomeric transcriptome in relation to thermal stress that could rely on the structure-function relationship of the CriTER-A transcripts.


Assuntos
Chironomidae/genética , RNA não Traduzido/genética , Telômero/genética , Transcriptoma/genética , Animais , Sequência de Bases , Resposta ao Choque Térmico/genética , Temperatura Alta
2.
Ecotoxicol Environ Saf ; 206: 111199, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889307

RESUMO

Living organisms are exposed to mixtures of pollutants in the wild. Inland aquatic ecosystems contain many compounds from different sources that pollute the water column and the sediment. However, majority of toxicological research is focused on the effects of single exposures to toxicants. Furthermore, studies have been principally oriented toward ecologically relevant effects of intoxication, and lack an analysis of the cellular and molecular mechanisms involved in the response to toxicants. Effects of single, binary, and ternary mixtures of three compounds, bisphenol A, octocrylene, and 2'-ethylhexyl 4- (dimethylamino)benzoate, were assessed using a Real-Time PCR array. Forty genes, and additional six reference genes, were included in the array. The genes were selected based on their association with hormone responses, detoxification mechanisms, the stress response, DNA repair, and the immune system. The study was performed on Chironomus riparius, a benthic dipteran with an essential role in the food web. Transcriptional responses were assessed both 24 and 96 h post-exposure, to determinate short- and medium-term cellular responses. Individual fourth instar larvae were exposed to 0.1 and 1 mg/L of each of the toxic compounds and compound mixtures. A weak response was detected at 24 h, which was stronger in larvae exposed to mixtures than to individual toxicants. The response at 96 h was complex and principally involved genes related to the endocrine system, detoxification mechanisms, and the stress response. Furthermore, exposure to mixtures of compounds altered the expression patterns of an increased number of genes than did individual compound exposures, which suggested complex interactions between compounds affected the regulation of transcriptional activity. The results obtained highlight the importance of analyzing the mechanisms involved in the response to mixtures of compounds over extended periods and offer new insights into the basis of the physiological responses to pollution.


Assuntos
Acrilatos/toxicidade , Compostos Benzidrílicos/toxicidade , Chironomidae/efeitos dos fármacos , Fenóis/toxicidade , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , para-Aminobenzoatos/toxicidade , Animais , Chironomidae/genética , Sinergismo Farmacológico , Ecossistema , Sistema Endócrino/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética
3.
Ecotoxicol Environ Saf ; 170: 568-577, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576892

RESUMO

The fungicide vinclozolin (Vz) is an endocrine disruptor with known anti-androgenic activity in vertebrates. However, there is a lack of information about the Vz mode of action in invertebrates, although some studies have shown that this compound can produce alterations in different species. Transcriptional activity was analyzed in the freshwater snail Physella acuta in order to elucidate putative cellular processes altered by this chemical during a response. In order to identify potential molecular biomarkers, a de novo transcriptome was generated for this species that constitutes a valuable source for future studies. This data, together with some already available data, permitted the identification of several genes related to detoxification mechanisms (Cyp2u1, Cyp3a7, Cyp4f22, GSTo1, GSTt2, and MRP1), stress response (Hsp20.4, Hsp17, Hsp16.6, and Cu,Zn-SOD), the hormonal system (Estrogen Receptor and Hsp90), apoptosis (Casp3), and copper homeostasis (ATOX1). Using quantitative Real-Time polymerase chain reaction, mRNA levels of these genes were examined in snails exposed to 20 or 200 µg/L Vz for 24 h. The results showed an overall weak response, with downregulation of Hsp20.4 and no statistically significant change for the other genes. These findings suggest that P. acuta can manage the concentrations of Vz found in the environment with no relevant activation of the pathways analyzed, although additional studies are needed for longer exposure times and including other metabolic pathways. The new genes described open the range of processes that can be studied at the molecular level in toxicity tests.


Assuntos
Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Larva/efeitos dos fármacos , Oxazóis/toxicidade , Caramujos/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Água Doce/química , Larva/genética , Caramujos/genética
4.
Ecotoxicol Environ Saf ; 149: 64-71, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29154136

RESUMO

Ultraviolet (UV) filters are compounds used to prevent the damage produced by UV radiation in personal care products, plastics, etc. They have been associated with endocrine disruption, showing anti-estrogen activity in vertebrates and altering the ecdysone pathway in invertebrates. Although they have attracted the attention of multiple research teams there is a lack of data about how animals activate detoxification systems, especially in invertebrates. Here, analysis of the effects of two UV filters, benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC), on the transcriptional activity of nine genes covering the three steps of the detoxification process has been performed. Four cytochrome P450 genes belonging to different members of this family, five GST genes, and the multidrug resistance protein 1 (MRP1) gene were studied by RT-PCR to analyze their transcriptional activity in fourth instar larvae exposed to the UV filters for 8 and 24h. The obtained results show a differential response with downregulation of the different Cyp450s tested by 4MBC while BP3 seems not to modify their expression. On the other hand, some of the GST genes were affected by one or other of the filters, showing a less homogenous response. Finally, MRP1 was activated by both filters but at different times. These results demonstrate for first time that UV filters alter the expression of genes involved in the different steps of the detoxification process and that they can be processed by phase I enzymes other than Cyp450s. They also suggest that UV filters affect biotransformation processes, compromising the ability of the individual to respond to chemical stress, so further research is needed to know the extent of the damage that they can produce in the resistance of the cell to chemicals.


Assuntos
Benzofenonas/toxicidade , Cânfora/análogos & derivados , Chironomidae/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Protetores Solares/toxicidade , Transcrição Gênica/efeitos dos fármacos , Animais , Cânfora/toxicidade , Chironomidae/genética , Ecdisona/genética , Inativação Metabólica/genética , Larva/efeitos dos fármacos , Larva/genética
5.
Ecotoxicol Environ Saf ; 152: 132-138, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407779

RESUMO

Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Expressão Gênica/efeitos dos fármacos , Caracois Helix/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , Relação Dose-Resposta a Droga , Água Doce/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Caracois Helix/genética , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Fatores de Tempo
6.
Ecotoxicol Environ Saf ; 140: 185-190, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28260683

RESUMO

Triclosan (TCS) is an antibacterial agent widely used in personal care and consumer products and commonly detected in aquatic ecosystems. In the present study, the effects of TCS on endocrine-related genes of Chironomus riparius aquatic larvae, a reference organism in aquatic toxicology, were evaluated. Twenty-four-hour in vivo exposures at 10µg/L, 100µg/L, and 1000µg/L TCS revealed that this xenobiotic was able to alter the transcriptional activity of ecdysone receptor gene (EcR), the ultraspiracle gene (usp), the estrogen-related receptor gene (ERR), and the E74 early ecdysone-inducible gene, as measured by real-time RT-PCR. Moreover, the hsp70 gene, a heat shock protein gene, was upregulated after exposure to TCS. The results of the present work provide the first evidence of the potential disruptive effects of TCS in endocrine-related genes suggesting a mode of action that mimics ecdysteroid hormones in insects.


Assuntos
Antibacterianos/toxicidade , Chironomidae/genética , Larva/genética , Receptores de Esteroides/genética , Triclosan/toxicidade , Animais , Antibacterianos/farmacologia , Chironomidae/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ecdisona/genética , Ecdisona/metabolismo , Sistema Endócrino/efeitos dos fármacos , Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Dose Letal Mediana , Triclosan/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-26129721

RESUMO

Small heat shock proteins (sHSPs) comprise the most numerous, structurally diverse, and functionally uncharacterized family of heat shock proteins. Several Hsp genes (Hsp 90, 70, 40, and 27) from the insect Chironomus riparius are widely used in aquatic toxicology as biomarkers for environmental toxins. Here, we conducted a comparative study and characterized secondary structure of the six newly identified sHsp genes Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, and Hsp34. A characteristic α-crystallin domain is predicted in all the new proteins. Phylogenetic analysis suggests a strong relation to other sHSPs from insects and interesting evidence regarding evolutionary origin and duplication events. Comparative analysis of transcription profiles for Hsp27, Hsp70, and the six newly identified genes revealed that Hsp17, Hsp21, and Hsp22 are constitutively expressed under normal conditions, while under two different heat shock conditions these genes are either not activated or are even repressed (Hsp22). In contrast, Hsp23, Hsp24, and Hsp34 are significantly activated along with Hsp27 and Hsp70 during heat stress. These results strongly suggest functional differentiation within the small HSP subfamily and provide new data to help understand the coping mechanisms induced by stressful environmental stimuli.


Assuntos
Chironomidae/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Choque Térmico/genética , Temperatura Alta , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Chironomidae/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/classificação , Resposta ao Choque Térmico/genética , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Estrutura Secundária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Estresse Fisiológico/genética
8.
Gels ; 10(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667653

RESUMO

The emergence of the global pandemic (COVID-19) has directed global attention towards the importance of hygiene as the primary defense against various infections. In this sense, one of the frequent recommendations of the World Health Organization (WHO) is regular hand washing and the use of alcohol-based hand sanitizers. Ethanol is the most widely used alcohol due to its effectiveness in eliminating pathogens, ease of use, and widespread production. However, artisanal alcohol, generally used as a spirit drink, could be a viable alternative for developing sanitizing gels. In this study, the use of alcohol "Puntas", silver nanoparticles, and saponins from quinoa was evaluated to produce hand sanitizer gels. The rheological, physicochemical, and antimicrobial properties were evaluated. In the previous assays, the formulations were adjusted to be similar in visual viscosity to the control gel. A clear decrease in the apparent viscosity was observed with increasing shear rate, and an inversely proportional relationship was observed with the amount of ethyl alcohol used in the formulations. The flow behavior index (n) values reflected a pseudoplastic behavior. Oscillatory dynamic tests were performed to analyze the viscoelastic behavior of gels. A decrease in storage modulus (G') and an increase in loss modulus (G″) as a function of the angular velocity (ω) was observed. The evaluation of pH showed that the gels complied with the requirements to be in contact with the skin of the people, and the textural parameters showed that the control gel was the hardest. The use of artisan alcohol could be an excellent alternative to produce sanitizer gel and contribute to the requirements of the population.

9.
Environ Toxicol Pharmacol ; 108: 104428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570150

RESUMO

An investigation of the effects of anthropogenic stress on terrestrial ecosystems is urgently needed. In this work, we explored how exposure to heat, desiccation, and chemical stress alters the expression of genes that encode heat shock proteins (HSPs), an enzyme that responds to oxidative stress (CAT), hypoxia-related proteins (HIF1 and HYOU), and a DNA repair-related protein (PARP1) in the earthworm Eisenia fetida. Exposure to heat (31°C) for 24 h upregulated HSPs and hypoxia-related genes, suggesting possible acquired thermotolerance. Desiccation showed a similar expression profile; however, the HSP response was activated to a lesser extent. Heat and desiccation activated the small HSP at 24 h, suggesting that they may play a role in adaptation. Simultaneous exposure to endosulfan and temperature for 7 h upregulated all of the evaluated genes, implicating a coordinated response involving multiple biological processes to ensure survival and acclimation. These results highlight the relevance of multistress analysis in terrestrial invertebrates.


Assuntos
Proteínas de Choque Térmico , Temperatura Alta , Oligoquetos , Animais , Oligoquetos/genética , Oligoquetos/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Dessecação , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade
10.
Environ Toxicol Chem ; 43(2): 405-417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018734

RESUMO

Pesticides employed worldwide for crop protection easily reach aquatic systems, which act as the main reservoirs, and become a risk factor for aquatic fauna. Fipronil is a broad-spectrum insecticide acting on the insect nervous system; however, other effects and systems unrelated to this mechanism could be affected in non-target organisms. Thus, the present study aimed to assess the impact of fipronil on the suborganismal response (gene expression and enzymatic activity) of Chironomus riparius larvae as a model organism in ecotoxicology. To this end, short-term toxicity tests were carried out with fourth-instar larvae exposed to 0.001, 0.01, and 0.1 µg L-1 of fipronil for 24 and 96 h. Messenger RNA levels of 42 genes related to diverse metabolic pathways were analyzed by real-time polymerase chain reaction, complemented with catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities. Few effects were observed at 24 h; however, after longer exposure (96 h), genes involved in the endocrine, detoxification, stress, and immune response pathways were altered. Moreover, fipronil at 96 h increased CAT and GST activity at 0.01 µg L-1 and AChE at the highest concentrations. The results demonstrate that even low environmentally relevant fipronil concentrations can modulate the molecular response of several cellular pathways in C. riparius after short-term exposure. These results bring new information about the underlying response of fipronil and its mode of action on a key aquatic invertebrate. Despite no effects on mortality, strong modulation at the suborganismal level emphasizes the advantage of biomarkers as early damage responses and the harmful impact of this pesticide on freshwater organisms. Environ Toxicol Chem 2024;43:405-417. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Chironomidae , Inseticidas , Pirazóis , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Chironomidae/genética , Acetilcolinesterase/metabolismo , Larva/metabolismo , Poluentes Químicos da Água/toxicidade
11.
Epigenetics ; 19(1): 2296275, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38154067

RESUMO

The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate D. magna at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of Daphnia to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.


Assuntos
Daphnia magna , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Epigênese Genética , Ecossistema , Metilação de DNA , Metais , Expressão Gênica , Reprodução
12.
Mutat Res Genet Toxicol Environ Mutagen ; 758(1-2): 41-7, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24060506

RESUMO

Genotoxicity is one of the most important toxic endpoints in chemical toxicity testing and environmental risk assessment. The aim of this study was to evaluate the genotoxic potential of various environmental pollutants frequently found in aquatic environments and characterized by their endocrine disrupting activity. Monitoring of DNA damage was undertaken after in vivo exposures of the aquatic larvae of the midge Chironomus riparius, a model organism that represents an abundant and ecologically relevant macroinvertebrate, widely used in freshwater toxicology. DNA-induced damage, resulting in DNA fragmentation, was quantified by the comet assay after short (24 h) and long (96 h) exposures to different concentrations of the selected toxicants: bisphenol A (BPA), nonylphenol (NP), pentachlorophenol (PCP), tributyltin (TBT) and triclosan (TCS). All five compounds were found to have genotoxic activity as demonstrated by significant increases in all the comet parameters (%DNA in tail, tail length, tail moment and Olive tail moment) at all tested concentrations. Persistent exposure did not increase the extent of DNA damage, except for TCS at the highest concentration, but generally there was a reduction in DNA damage thought to be associated with the induction of the detoxification processes and repairing mechanisms. Comparative analysis showed differences in the genotoxic potential between the chemicals, as well as significant time and concentration-dependent variations, which most likely reflect differences in the ability to repair DNA damage under the different treatments. The present report demonstrates the sensitivity of the benthic larvae of C. riparius to these environmental genotoxins suggesting its potential as biomonitor organism in freshwater ecosystems. The results obtained about the DNA-damaging potential of these environmental pollutants reinforce the need for additional studies on the genotoxicity of endocrine active substances that, by linking genotoxic activity to other biological responses, could provide further understanding of adverse effects in aquatic environments.


Assuntos
Chironomidae/efeitos dos fármacos , Ensaio Cometa , Disruptores Endócrinos/toxicidade , Mutagênicos/toxicidade , Animais , Chironomidae/genética
13.
Sci Rep ; 13(1): 4031, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899054

RESUMO

Pesticides are an environmental problem. The search for new pest control methods has focused on compounds with low or no toxic effects in non-target organisms. Analogs of the juvenile hormone (JH) interfere endocrine system of arthropods. However, the lack of effect on non-target species requires confirmation. This article analyzes the impact of Fenoxycarb, an analog of JH, on Physella acuta, an aquatic gastropod. For 1 week, animals were exposed to 0.01, 1, and 100 µg/L and the RNA was isolated to analyze the gene expression by retrotranscription and Real-Time PCR. Forty genes related to the endocrine system, the DNA repair mechanisms, the detoxification mechanisms, oxidative stress, the stress response, the nervous system, hypoxia, energy metabolism, the immune system, and apoptosis were analyzed. Three of the genes, AchE, HSP17.9, and ApA, showed responses to the presence of Fenoxycarb at 1 µg/L, with no statistically significant responses in the rest of the genes and at the remaining concentrations. From the results, it can be concluded that Fenoxycarb shows a weak response at the molecular level in P. acuta in the tested time and concentrations. However, Aplysianin-A, a gene related to immunity, was altered so the long-term effect could be relevant. Therefore, additional research is required to confirm the safety of Fenoxycarb in non-arthropod species in the long term.


Assuntos
Praguicidas , Animais , Hormônios Juvenis , Caramujos/genética , Expressão Gênica
14.
Sci Total Environ ; 858(Pt 3): 159899, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336062

RESUMO

The wildfire magnification in recent years has raised increasing concern about their adverse impacts on the environment. Wildfires are recognized as an important source of diffuse pollution for the nearby aquatic systems being potentially toxic to aquatic life. Albeit previous studies with wildfire runoff/ashes observed effects in aquatic organisms, to date, different severity origins of ashes and their impact at the sub-organismal level on aquatic biota have not been assessed. In this work, the molecular response of Chironomus riparius exposed to wildfire with low (LS) and high (HS) severity ashes from burnt Pine plantations was evaluated by employing an array of 42 genes related to crucial metabolic pathways by Real time-PCR. IV instar larvae were exposed for 72 h to aqueous extract of ashes (12.5 %, 25 %, 50 %, 75 % and 100 %) prepared from LS and HS ashes. Mn, Zn, and Pb were the metals found at highest concentration in both ash extracts, for HS notable Cd, Mn and Cr presence. From the 42 genes studied only 4 were not altered (22 genes modulated their response by LS and 38 genes in the case of HS) showing the opposite response at 100% with downregulated by LS and upregulated by HS. The 12.5 %, 25 %, 100 % HS and 25 % LS were the main modulators, confirmed by the integrative biomarkers response (IBR). Remarkable genotoxicity was generated by ashes even activating the apoptosis response, and endocrine disruption observed could modify the development. Moreover, detoxification and stress response were strongly activated, limiting the organism's future response to external aggressions. The employment of this novelty approach with molecular tools act as early alarm signal preventing greater damages. Overall, wildfire ashes showed to be a significant environmental disruptor to C. riparius even at lower concentration and the short exposure time employed, emphasizing the strong impact of wildfires on aquatic systems.


Assuntos
Larva , Animais
15.
Sci Rep ; 12(1): 2078, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136168

RESUMO

Silver nanoparticles (Ag-NPs) are extremely useful in a diverse range of consumer goods. However, their impact on the environment is still under research, especially regarding the mechanisms involved in their effect. Aiming to provide some insight, the present work analyzes the transcriptional activity of six genes (Hsp83, Hsp17.2, Hsp19.8, SOD Cu-Zn, Mn-SOD, and BPI) in the terrestrial snail Helix aspersa in the presence of different concentrations of Ag-NPs. The animals were exposed for seven days to Lactuca sativa soaked for one hour in different concentrations of Ag-NPs (20, 50, 100 mg/L). The results revealed that the highest concentration tested of Ag-NPs (100 mg/L) led to a statistically significant induction of the Hsp83 and BPI expression in the digestive gland compared to the control group. However, a trend to upregulation with no statistical significance was observed for all the genes in the digestive gland and the foot, while in the hemolymph, the trend was to downregulation. Ag-NPs affected the stress response and immunity under the tested conditions, although the impact was weak. It is necessary to explore longer exposure times to confirm that the effect can be maintained and impact on health. Our results highlight the usefulness of the terrestrial snail Helix aspersa as a bioindicator organism for silver nanoparticle pollution biomonitoring and, in particular, the use of molecular biomarkers of pollutant effect as candidates to be included in a multi-biomarker strategy.


Assuntos
Monitoramento Biológico/métodos , Poluentes Ambientais/efeitos adversos , Caracois Helix/efeitos dos fármacos , Caracois Helix/genética , Nanopartículas Metálicas/química , Transcrição Gênica/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Sanguíneas/biossíntese , Proteínas Sanguíneas/genética , Biomarcadores Ambientais , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Caracois Helix/imunologia , Lactuca , Estresse Oxidativo/efeitos dos fármacos , Espécies Sentinelas , Prata/farmacologia , Transcrição Gênica/genética
16.
Environ Sci Pollut Res Int ; 29(7): 10210-10221, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34515935

RESUMO

Chemical compounds produced by humans are continuously reaching the environment. In this work, we characterised the expression patterns of important endocrine-related genes involved in the ecdysone pathway in the fourth larval instar of the model species Chironomus riparius after exposure to three chemicals: ethinyl oestradiol (EE), nonylphenol (NP) and bis(tributyltin) oxide (TBTO). We used real-time PCR to analyse the gene expression levels of ecdysone receptor (EcR) and ultraspiracle (usp), two genes that encode the dimerising partners of the functional ecdysone receptor; the orphan receptor ERR (oestrogen-related receptor), with an unknown function in invertebrates; and E74, an early response gene induced by ecdysteroids. We estimated the bioaccumulation potential, bioavailability and physicochemical properties of these chemicals, together with a number of other exogenous agents known to interfere with the hormonal system. We also provide a review of previous transcriptional studies showing the effect of all these chemicals on ecdysone cascade genes. This analysis provides useful data for future ecotoxicological studies involving invertebrate species. CAPSULE: Changes in transcriptional activities of EcR, E74, usp and ERR genes after exposure to endocrine-disrupting chemicals would be useful as molecular bioindicators of endocrine disruption in Chironomus riparius.


Assuntos
Chironomidae , Disruptores Endócrinos , Receptores de Esteroides , Animais , Chironomidae/genética , Ecdisona , Disruptores Endócrinos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Larva/genética , RNA Mensageiro , Receptores de Esteroides/genética , Espécies Sentinelas
17.
Sci Rep ; 11(1): 11411, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075110

RESUMO

Plastic pollution is one of the leading environmental problems. Phthalates are widely used plastic additives released into the environment. Although the effects of phthalates on vertebrates have been extensively studied, there is a knowledge gap regarding their effects on invertebrates. This work analyzes the impact of three phthalates, diethyl phthalate (DEP), benzyl butyl phthalate (BBP), and bis-(2-ethylhexyl) phthalate (DEHP), on the gastropod Physella acuta at the molecular level to establish the putative pathways involved in its response to them. By real-time PCR, we obtained the expression profile of 30 genes in animals exposed for 1 week to 0.1, 10, and 1000 µg/L of each phthalate. The genes cover DNA repair, detoxification, apoptosis, oxidative and stress responses, immunity, energy reserves, and lipid transport. The results show that while DEP and DEHP did not alter the mRNA levels, BBP modulated almost all the analyzed genes. It can be concluded that the impact of BBP is extensive at the molecular level. However, it cannot be dismissed that the increase in transcriptional activity is a general response due to this compound's well-known role as an endocrine disruptor. Additional research is needed to elucidate the differences observed in the impact of these compounds on the gastropod P. acuta.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Moluscos , Ácidos Ftálicos/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Moluscos/efeitos dos fármacos , Moluscos/metabolismo
18.
Environ Sci Pollut Res Int ; 28(24): 31431-31446, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33608783

RESUMO

Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 µg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.


Assuntos
Chironomidae , Praguicidas , Poluentes Químicos da Água , Animais , Chironomidae/genética , Endossulfano/toxicidade , Larva , Poluentes Químicos da Água/toxicidade
19.
Environ Pollut ; 285: 117462, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091266

RESUMO

The extent until which plastics are present in our surrounding environment completely exceeds our expectations. Plastic materials in the form of microplastics have been found in terrestrial, freshwater and marine environments and are transported through the atmosphere even to remote locations. However, we are still far from understanding the effects that they may have caused and are causing to biota. In the present study, we investigated the alterations in the expression of twelve genes in the aquatic insect Chironomus riparius after 36 h exposures to polystyrene and tire rubber microplastics at nominal concentrations of 1 and 10 mg L-1. The results indicated that several genes encoding for heat shock proteins (hsp90, Glycoprotein 93 (Gp93), hsc70, hsp60, hsp40, and the small HSP hsp17) were overexpressed respect to the control. In addition, the genes coding for manganese superoxide dismutase (SOD Mn, related to alleviation of oxidative stress) and for the FK506-binding protein of 39 kDa. (FKBP39, related to development and pupation) showed altered expression. Most of the alterations on gene expression level occurred at a concentration of 10 mg L-1 of tire rubber microplastics, although specific modifications arose at other concentrations of both rubber and polystyrene. On the contrary, one hsp gene (hsp10) and genes related to biotransformation and detoxification (Cyp9f2, Cyp12a2, and ABCB6) did not alter their expression in any of the treatments. Overall, the results of the gene expression indicated that microplastics (especially tire rubber) or their additives caused cellular stress that led to some alterations in the normal gene expression but did not cause any mortality after 36 h. These results highlight the need for more studies that describe the alterations caused by microplastics at the molecular level. Additionally, it opens questions about the effects caused to aquatic fauna in environmental realistic situations, especially in hot spots of microplastic contamination (e.g., tire rubber released in storm water runoff discharge points).


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Chironomidae/genética , Expressão Gênica , Microplásticos , Plásticos/toxicidade , Poliestirenos , Borracha/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
Environ Pollut ; 290: 118061, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523523

RESUMO

Pesticides used in agriculture can be transported at a medium-high distance due to the drift effect, reaching even remote areas as mountain regions, glaciers, and snow cover. With the melting process, pesticides enter freshwater glacier ecosystems, becoming a threat to wildlife fauna, mainly dominated by Diptera Chironomidae. Chlorpyrifos (CPF), as one of the most commonly used pesticides in alpine vineyards and apple orchards, is frequently detected in icemelt waters. We selected as target species, larvae of the cold stenothermal chironomid Diamesa zernyi, collected in two glacier-fed streams (Presena and Amola) in the Italian Alps. Firstly, a de novo transcriptome was obtained, and secondly, a gene array was designed to study the molecular response of a wild population of D. zernyi exposed to three sub-lethal CPF concentrations corresponding to 1/100 LC10 (0.011 µg/L), 1/10 LC10 (0.11 µg/L), and LC10 (1.1 µg/L), for 24 h. The sub-organismal response was evaluated by Real-Time Polymerase Chain Reaction (RT-PCR), employing 40 genes related to essential metabolic routes as future candidates for biomarkers in wildlife chironomids. After 24 h, the endocrine system (E75, E93, EcR, and Met), detoxification response (GSTO3, GSTS1), and stress response (hsp75, hsp83, HYOU1) were altered. CPF seems to act as an endocrine disruptor and could lead to defective larval development, disrupted cellular homeostasis through heat shock proteins (HSPs) alteration (defective protein folding and mitochondrial functions), as well as oxidative damage (confirmed by increased GST expression). For the first time, molecular studies detected early alarm signals in wildlife in glacier environments. Our findings confirm the high environmental risk of CPF affecting aquatic insect metabolism and raise the level of concern about this pesticide in high altitude water bodies, generally considered pristine. Furthermore, this study emphasizes the incipient need to use non-model organisms for the evaluation of natural ecosystems. We also highlight the demand for research into new molecular biomarkers, and the importance of including molecular approaches in toxicology evaluations to detect the early adverse effects of pollutants.


Assuntos
Chironomidae , Clorpirifos , Poluentes Químicos da Água , Animais , Biomarcadores , Clorpirifos/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA