Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Blood ; 143(15): 1496-1512, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38170178

RESUMO

ABSTRACT: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.


Assuntos
Linfoma Cutâneo de Células T , Síndrome de Sézary , Neoplasias Cutâneas , Infecções Estafilocócicas , Humanos , Síndrome de Sézary/tratamento farmacológico , Síndrome de Sézary/patologia , Staphylococcus aureus , NF-kappa B , Linfócitos T , Enterotoxinas/farmacologia , Linfoma Cutâneo de Células T/patologia , Receptores de Antígenos de Linfócitos T , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Resistência a Medicamentos
2.
Thorax ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033028

RESUMO

BACKGROUND: Interstitial lung diseases (ILDs) include a large number of diseases associated with progressive pulmonary fibrosis (PPF), including idiopathic pulmonary fibrosis (IPF). Despite the rarity of each of the fibrotic ILDs individually, they cumulatively affect a considerable number of patients. PPF is characterised by an excessive collagen deposition leading to functional decline. OBJECTIVES: Therapeutic options are limited to nintedanib and pirfenidone which are only able to reduce fibrosis progression. CD206-expressing M2 macrophages are involved in fibrosis progression, and whether they may be relevant therapeutic targets or biomarkers remains an open question. RESULTS: In our study, CD206+ lung macrophages were monitored in bleomycin-induced lung fibrosis in mice by combining flow cytometry, scRNAseq and in vivo molecular imaging using a single photon emission computed tomography (SPECT) radiopharmaceutical, 99mTc-tilmanocept. The antifibrotic effect of the inhibition of M2 macrophage polarisation with a JAK inhibitor, tofacitinib, was assessed in vivo. We demonstrate that CD206-targeted in vivo SPECT imaging with 99mTc-tilmanocept was able to accurately detect and quantify the increase in CD206+ macrophages from early to advanced stages of experimental fibrosis and ex vivo in lung biopsies from patients with IPF. CD206-targeted imaging also specifically detected a decrease in CD206+ lung macrophages on nintedanib and tofacitinib treatment. Importantly, early in vivo imaging of CD206+ macrophages allowed the prediction of experimental lung fibrosis progression as well as nintedanib and tofacitinib efficacy. CONCLUSIONS: These findings indicate that M2 macrophages may be relevant theranostic targets for personalised medicine for patients with PPF.

3.
Am J Respir Crit Care Med ; 207(11): 1498-1514, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917778

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive lung scarring. IPF-related pulmonary vascular remodeling and pulmonary hypertension (PH) result in a particularly poor prognosis. Objectives: To study the pathogenesis of vascular remodeling in fibrotic lungs and its contribution to progression of fibrosis. Methods: We used an experimental model of lung fibrosis associated with PH by transient overexpression of active TGF-ß1 (transforming growth factor-ß1). Samples from patients with fibrotic lung diseases were analyzed in depth using immunostaining, gene expression, and gene mutations. Measurements and Main Results: We found a reduction in endothelial cells (ECs) and activation of vascular smooth muscle cells (VSMCs) in fibrotic lungs. Coculturing fibroblasts with VSMCs or ECs from fibrotic lungs induced fibrotic phenotypes in fibroblasts. IPF fibroblasts induced EC death and activation of VSMCs in coculture systems. Decreased concentrations of BMPR2 (bone morphogenic protein receptor 2) and its signaling were observed in ECs and VSMCs from fibrotic lungs in both rats and humans. On fibroblasts treated with media from VSMCs, BMPR2 suppression in VSMCs led to fibrogenic effects. Tacrolimus activated BMPR2 signaling and attenuated fibrosis and PH in rodent lungs. Whole-exome sequencing revealed rare mutations in PH-related genes, including BMPR2, in patients with IPF undergoing transplantation. A unique missense BMPR2 mutation (p.Q721R) was discovered to have dysfunctional effects on BMPR2 signaling. Conclusions: Endothelial dysfunction and vascular remodeling in PH secondary to pulmonary fibrosis enhance fibrogenesis through impaired BMPR2 signaling. Tacrolimus may have value as a treatment of advanced IPF and concomitant PH. Genetic abnormalities may determine the development of PH in advanced IPF.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar Idiopática , Humanos , Ratos , Animais , Remodelação Vascular , Células Endoteliais/metabolismo , Tacrolimo , Pulmão/patologia , Fibrose Pulmonar Idiopática/patologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibroblastos/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética
4.
Am J Respir Crit Care Med ; 205(4): 459-467, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818133

RESUMO

Rationale: Fibrotic interstitial lung disease (fILD) is a group of pathologic entities characterized by scarring of the lungs and high morbidity and mortality. Research investigating how socioeconomic and residential factors impact outcomes in patients with fILD is lacking. Objectives: To determine the association between neighborhood-level disadvantage and presentation severity, disease progression, lung transplantation, and mortality in patients with fILD from the United States and Canada. Methods: We performed a multicenter, international, prospective cohort study of 4,729 patients with fILD from one U.S. and eight Canadian ILD registry sites. Neighborhood-level disadvantage was measured by the area deprivation index in the United States and the Canadian Index of Multiple Deprivation in Canada. Measurements and Main Results: In the U.S. but not in the Canadian cohort, patients with fILD living in neighborhoods with the greatest disadvantage (top quartile) experience the highest risk of mortality (hazard ratio = 1.51, P = 0.002), and in subgroups of patients with idiopathic pulmonary fibrosis, the top quartile of disadvantage experienced the lowest odds of lung transplantation (odds ratio = 0.46, P = 0.04). Greater disadvantage was associated with reduced baseline DLCO in both cohorts, but it was not associated with baseline FVC or FVC or DLCO decline in either cohort. Conclusions: Patients with fILD who live in areas with greater neighborhood-level disadvantage in the United States experience higher mortality, and patients with idiopathic pulmonary fibrosis experience lower odds of lung transplantation. These disparities are not seen in Canadian patients, which may indicate differences in access to care between the United States and Canada.


Assuntos
Disparidades nos Níveis de Saúde , Disparidades em Assistência à Saúde , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Características de Residência , Privação Social , Determinantes Sociais da Saúde , Idoso , Canadá/epidemiologia , Progressão da Doença , Feminino , Disparidades em Assistência à Saúde/economia , Disparidades em Assistência à Saúde/estatística & dados numéricos , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/economia , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/cirurgia , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/economia , Doenças Pulmonares Intersticiais/mortalidade , Doenças Pulmonares Intersticiais/cirurgia , Transplante de Pulmão/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Prognóstico , Estudos Prospectivos , Fatores de Risco , Estados Unidos/epidemiologia
5.
Am J Respir Cell Mol Biol ; 66(3): 260-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34797990

RESUMO

Idiopathic pulmonary fibrosis is a fatal lung disease characterized by progressive and excessive accumulation of myofibroblasts and in the lung. Connective-tissue growth factor (CTGF) exacerbates pulmonary fibrosis in radiation-induced lung fibrosis, and in this study, we demonstrate upregulation of CTGF in a rat lung fibrosis model induced by an adenovirus vector encoding active TGF-ß1 (AdTGF-ß1). We show that CTGF is also upregulated in patients with idiopathic pulmonary fibrosis. Expression of CTGF was upregulated in vascular smooth muscle cells cultured from fibrotic lungs on Days 7 and 14 as well as endothelial cells sorted from fibrotic lungs on Days 14 and 28. These findings suggest contributions of different cells in maintaining the fibrotic phenotype during fibrogenesis. Treatment of fibroblasts with recombinant CTGF along with TGF-ß increases profibrotic markers in fibroblasts, confirming the synergistic effect of recombinant CTGF with TGF-ß in inducing pulmonary fibrosis. Also, the fibrotic extracellular matrix upregulated CTGF expression, compared with the normal extracellular matrix, suggesting that not only profibrotic mediators but also a profibrotic environment contributes to fibrogenesis. We also showed that pamrevlumab, a CTGF inhibitory antibody, partially attenuates fibrosis in the model. These results suggest that pamrevlumab could be an option for treatment of pulmonary fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Anticorpos Monoclonais Humanizados , Fator de Crescimento do Tecido Conjuntivo/genética , Células Endoteliais/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/genética , Ratos , Fator de Crescimento Transformador beta1/farmacologia
6.
Value Health ; 25(7): 1099-1106, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151559

RESUMO

OBJECTIVES: A multicenter randomized clinical trial in Hong Kong Accident and Emergency (A&E) departments concluded that intramuscular (IM) olanzapine is noninferior to haloperidol and midazolam, in terms of efficacy and safety, for the management of acutely agitated patients in A&E setting. Determining their comparative cost-effectiveness will further provide an economic perspective to inform the choice of sedative in this setting. METHODS: This analysis used data from a randomized clinical trial conducted in Hong Kong A&E departments between December 2014 and September 2019. A within-trial cost-effectiveness analysis comparing the 3 sedatives was conducted, from the A&E perspective and a within-trial time horizon, using a decision-analytic model. Sensitivity analyses were also undertaken. RESULTS: In the base-case analysis, median total management costs associated with IM midazolam, haloperidol, and olanzapine were Hong Kong dollar (HKD) 1958.9 (US dollar [USD] 251.1), HKD 2504.5 (USD 321.1), and HKD 2467.6 (USD 316.4), respectively. Agitation management labor cost was the main cost driver, whereas drug costs contributed the least. Midazolam dominated over haloperidol and olanzapine. Probabilistic sensitivity analyses supported that midazolam remains dominant > 95% of the time and revealed no clear difference in the cost-effectiveness of IM olanzapine versus haloperidol (incremental cost-effectiveness ratio 667.16; 95% confidence interval -770.89, 685.90). CONCLUSIONS: IM midazolam is the dominant cost-effective treatment for the management of acute agitation in the A&E setting. IM olanzapine could be considered as an alternative to IM haloperidol given that there is no clear difference in cost-effectiveness, and their adverse effect profile should be considered when choosing between them.


Assuntos
Antipsicóticos , Haloperidol , Antipsicóticos/efeitos adversos , Benzodiazepinas/uso terapêutico , Análise Custo-Benefício , Serviço Hospitalar de Emergência , Haloperidol/efeitos adversos , Humanos , Injeções Intramusculares , Midazolam/uso terapêutico , Olanzapina/uso terapêutico , Agitação Psicomotora/tratamento farmacológico
7.
Am J Respir Cell Mol Biol ; 64(2): 235-246, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253593

RESUMO

Pulmonary fibrosis is a progressive lung disease characterized by myofibroblast accumulation and excessive extracellular matrix deposition. We sought to investigate the role of FKBP13 (13-kD FK506-binding protein), an endoplasmic reticulum-resident molecular chaperone, in various forms of pulmonary fibrosis. We first characterized the gene and protein expression of FKBP13 in lung biopsy specimens from 24 patients with idiopathic pulmonary fibrosis and 17 control subjects. FKBP13 expression was found to be elevated in the fibrotic regions of idiopathic pulmonary fibrosis lung tissues and correlated with declining forced vital capacity and dyspnea severity. FKBP13 expression was also increased in lung biopsy specimens of patients with hypersensitivity pneumonitis, rheumatoid arthritis, and sarcoidosis-associated interstitial lung disease. We next evaluated the role of this protein using FKBP13-/- mice in a bleomycin model of pulmonary fibrosis. Animals were assessed for lung function and histopathology at different stages of lung injury including the inflammatory (Day 7), fibrotic (Day 21), and resolution (Day 50) phases. FKBP13-/- mice showed increased infiltration of inflammatory cells and cytokines at Day 7, increased lung elastance and fibrosis at Day 21, and impaired resolution of fibrosis at Day 50. These changes were associated with an increased number of cells that stained positive for TUNEL and cleaved caspase 3 in the FKBP13-/- lungs, indicating a heightened cellular sensitivity to bleomycin. Our findings suggest that FKBP13 is a potential biomarker for severity of interstitial lung diseases and that it has a biologically relevant role in protecting mice against bleomycin-induced injury, inflammation, and fibrosis.


Assuntos
Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Proteínas de Ligação a Tacrolimo/metabolismo , Regulação para Cima/fisiologia , Animais , Biomarcadores/metabolismo , Biópsia/métodos , Bleomicina/efeitos adversos , Citocinas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Regulação para Cima/efeitos dos fármacos
8.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32165401

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown aetiology, which makes drug development challenging. Single administration of bleomycin directly to the lungs of mice is a widely used experimental model for studying pulmonary fibrogenesis and evaluating the effect of therapeutic antifibrotic strategies. The model works by inducing an early inflammatory phase, which transitions into fibrosis after 5-7 days. This initial inflammation makes therapeutic timing crucial. To accurately assess antifibrotic efficacy, the intervention should inhibit fibrosis without impacting early inflammation.Studies published between 2008 and 2019 using the bleomycin model to investigate pulmonary fibrosis were retrieved from PubMed, and study characteristics were analysed. Intervention-based studies were classified as either preventative (starting <7 days after bleomycin installation) or therapeutic (>7 days). In addition, studies were cross-referenced with current major clinical trials to assess the availability of preclinical rationale.A total of 976 publications were evaluated. 726 investigated potential therapies, of which 443 (61.0%) were solely preventative, 166 (22.9%) were solely therapeutic and 105 (14.5%) were both. Of the 443 preventative studies, only 70 (15.8%) characterised inflammation during the model's early inflammatory phase. In the reported 145 IPF clinical trials investigating 93 compounds/combinations, only 25 (26.9%) interventions had any preclinical data on bleomycin available on PubMed.Since 2008, we observed a shift (from <5% to 37.4%) in the number of studies evaluating drugs in the therapeutic setting in the bleomycin model. While this shift is encouraging, further characterisation of early inflammation and appropriate preclinical therapeutic testing are still needed. This will facilitate fruitful drug development in IPF, and more therapeutic strategies for patients with this devastating disease.


Assuntos
Bleomicina , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática , Animais , Fibrose , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Camundongos
9.
Mol Pharm ; 17(11): 4375-4385, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33017153

RESUMO

Formaldehyde-inactivated toxoid vaccines have been in use for almost a century. Despite formaldehyde's deceptively simple structure, its reactions with proteins are complex. Treatment of immunogenic proteins with aqueous formaldehyde results in heterogenous mixtures due to a variety of adducts and cross-links. In this study, we aimed to further elucidate the reaction products of formaldehyde reaction with proteins and report unique modifications in formaldehyde-treated cytochrome c and corresponding synthetic peptides. Synthetic peptides (Ac-GDVEKGAK and Ac-GDVEKGKK) were treated with isotopically labeled formaldehyde (13CH2O or CD2O) followed by purification of the two main reaction products. This allowed for their structural elucidation by (2D)-nuclear magnetic resonance and nanoscale liquid chromatography-coupled mass spectrometry analysis. We observed modifications resulting from (i) formaldehyde-induced deamination and formation of α,ß-unsaturated aldehydes and methylation on two adjacent lysine residues and (ii) formaldehyde-induced methylation and formylation of two adjacent lysine residues. These products react further to form intramolecular cross-links between the two lysine residues. At higher peptide concentrations, these two main reaction products were also found to subsequently cross-link to lysine residues in other peptides, forming dimers and trimers. The accurate identification and quantification of formaldehyde-induced modifications improves our knowledge of formaldehyde-inactivated vaccine products, potentially aiding the development and registration of new vaccines.


Assuntos
Citocromos c/química , Formaldeído/farmacologia , Lisina/química , Peptídeos/química , Aldeídos/química , Cromatografia Líquida de Alta Pressão/métodos , Reagentes de Ligações Cruzadas/química , Desaminação/efeitos dos fármacos , Cinética , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metilação/efeitos dos fármacos , Estrutura Molecular , Vacinas de Produtos Inativados/química
10.
Curr Opin Pulm Med ; 26(5): 436-442, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32657838

RESUMO

PURPOSE OF REVIEW: In this review, the authors describe therapeutic strategies for a disease group called progressive fibrosing interstitial lung disease (PF-ILD) and highlight the importance of the definition of progression, prognosis, and treatment response. RECENT FINDINGS: Although it is a relatively new concept, the term PF-ILD has been increasingly applied in clinical research and practice. Three domains commonly used to detect the disease progression include clinical symptoms, rate of forced vital capacity (FVC) decline and the extent of fibrosis on imaging. Although details of the pathogenesis of PF-ILD are still unclear, it has become apparent that genetic predisposition and an abnormal tissue microenvironment and host response are involved in the nature of the disease. Antifibrotic agents recently showed their efficacy on the treatment of PF-ILD. Both nintedanib and pirfenidone can slow the disease progression, as defined by a decline of FVC from baseline, of PF-ILD whenever compared with placebo, similar to the results in idiopathic pulmonary fibrosis (IPF) trials. This effect seems consistent irrespective of the underlying ILD diagnosis. SUMMARY: Recent evidence supports the use of antifibrotic therapy in the management of the phenotype progressive non-IPF ILD. Ongoing studies exploring genetic and other molecular biomarkers could identify at-risk individuals or predict treatment response and prognosis (endotypes). This would support the concept of 'treatable traits' in the field of ILD.


Assuntos
Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/fisiopatologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/fisiopatologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Progressão da Doença , Humanos , Indóis/uso terapêutico , Doenças Pulmonares Intersticiais/complicações , Fenótipo , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Fibrose Pulmonar/complicações , Fibrose Pulmonar/diagnóstico por imagem , Piridonas/uso terapêutico , Resultado do Tratamento , Capacidade Vital
11.
Thorax ; 74(5): 455-465, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808717

RESUMO

BACKGROUND: The role of mast cells accumulating in idiopathic pulmonary fibrosis (IPF) lungs is unknown. OBJECTIVES: We investigated the effect of fibrotic extracellular matrix (ECM) on mast cells in experimental and human pulmonary fibrosis. RESULTS: In IPF lungs, mast cell numbers were increased and correlated with disease severity (control vs 60%90% vs 60%90% vs FVC<60%, mean difference=-268.6, 95% CI of difference -441.0 to -96.17, p=0.0007). Plasma tryptase levels were increased in IPF and negatively correlated with FVC (control vs FVC<60%, mean difference=-17.12, 95% CI of difference -30.02 to -4.22, p=0.006: correlation curves R=-0.045, p=0.025). In a transforming growth factor (TGF)-ß1-induced pulmonary fibrosis model, chymase-positive and tryptase-positive mast cells accumulated in fibrotic lung. Lung tissue was decellularised and reseeded with bone marrow or peritoneum-derived mast cells; cells on fibrotic ECM released more TGF-ß1 compared with normal ECM (active TGF-ß1: bone marrow-derived mast cell (BMMC)-DL vs BMMC-TGF-ß1 p=0.0005, peritoneal mast cell (PMC)-DL vs PMC-TGF-ß1 p=0.0003, total TGF-ß1: BMMC-DL vs BMMC-TGF-ß1 p=0.013, PMC-DL vs PMC-TGF-ß1 p=0.001). Mechanical stretch of lungs caused mast cell degranulation; mast cell stabilisers inhibited degranulation (histamine: cont vs doxantrazole p=0.004, ß-hexosaminidase: cont vs doxantrazole, mean difference=1.007, 95% CI of difference 0.2700 to 1.744, p=0.007) and TGF-ß1 activation (pSmad2/Smad2: cont vs dox p=0.006). Cromoglycate attenuated pulmonary fibrosis in rats (collagen: phosphate-buffered saline (PBS) vs cromoglycate p=0.036, fibrotic area: PBS vs cromoglycate p=0.031). CONCLUSION: This study suggests that mast cells may contribute to the progression of pulmonary fibrosis.


Assuntos
Degranulação Celular , Pulmão/patologia , Mastócitos/fisiologia , Fibrose Pulmonar/metabolismo , Estresse Mecânico , Fator de Crescimento Transformador beta1/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Pulmão/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
12.
Immunol Cell Biol ; 97(2): 203-217, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298952

RESUMO

Although recent evidence has shown that IL-6 is involved in enhanced alternative activation of macrophages toward a profibrotic phenotype, the mechanisms leading to their increased secretory capacity are not fully understood. Here, we investigated the effect of IL-6 on endoplasmic reticulum (ER) expansion and alternative activation of macrophages in vitro. An essential mediator in this ER expansion process is the IRE1 pathway, which possesses a kinase and endoribonuclease domain to cleave XBP1 into a spliced bioactive molecule. To investigate the IRE1-XBP1 expansion pathway, IL-4/IL-13 and IL-4/IL-13/IL-6-mediated alternative programming of murine bone marrow-derived and human THP1 macrophages were assessed by arginase activity in cell lysates, CD206 and arginase-1 expression by flow cytometry, and secreted CCL18 by ELISA, respectively. Ultrastructural intracellular morphology and ER biogenesis were examined by transmission electron microscopy and immunofluorescence. Transcription profiling of 128 genes were assessed by NanoString and Pharmacological inhibition of the IRE1-XBP1 arm was achieved using STF-083010 and was verified by RT-PCR. The addition of IL-6 to the conventional alternative programming cocktail IL-4/IL-13 resulted in increased ER and mitochondrial expansion, profibrotic profiles and unfolded protein response-mediated induction of molecular chaperones. IRE1-XBP1 inhibition substantially reduced the IL-6-mediated hyperpolarization and normalized the above effects. In conclusion, the addition of IL-6 enhances ER expansion and the profibrotic capacity of IL-4/IL-13-mediated activation of macrophages. Therapeutic strategies targeting IL-6 or the IRE1-XBP1 axis may be beneficial to prevent the profibrotic capacity of macrophages.


Assuntos
Retículo Endoplasmático , Endorribonucleases/metabolismo , Interleucina-3/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Fatores Ativadores de Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Humanos , Interleucina-4/farmacologia , Interleucina-6/farmacologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Células THP-1
13.
Am J Respir Crit Care Med ; 208(11): 1242-1243, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699236
15.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R216-R227, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046314

RESUMO

The extracellular matrix (ECM) modulates brain maturation and plays a major role in regulating neuronal plasticity during critical periods of development. We examined 1) whether there is a critical postnatal period of ECM expression in brain stem cardiorespiratory control regions and 2) whether the attenuated hypoxic ventilatory response (HVR) following neonatal sustained (5 days) hypoxia [SH (11% O2, 24 h/day)] exposure is associated with altered ECM formation. The nucleus tractus solitarius (nTS), dorsal motor nucleus of the vagus, hypoglossal motor nucleus, cuneate nucleus, and area postrema were immunofluorescently processed for aggrecan and Wisteria floribunda agglutinin (WFA), a key proteoglycan of the ECM and the perineuronal net. From postnatal day ( P) 5 ( P5), aggrecan and WFA expression increased postnatally in all regions. We observed an abrupt increase in aggrecan expression in the nTS, a region that integrates and receives afferent inputs from the carotid body, between P10 and P15 followed by a distinct and transient plateau between P15 and P20. WFA expression in the nTS exhibited an analogous transient plateau, but it occurred earlier (between P10 and P15). SH between P11 and P15 attenuated the HVR (assessed at P16) and increased aggrecan (but not WFA) expression in the nTS, dorsal motor nucleus of the vagus, and area postrema. An intracisternal microinjection of chondroitinase ABC, an enzyme that digests chondroitin sulfate proteoglycans, rescued the HVR and the increased aggrecan expression. These data indicate that important stages of ECM formation take place in key brain stem respiratory neural control regions and appear to be associated with a heightened vulnerability to hypoxia.


Assuntos
Tronco Encefálico/metabolismo , Matriz Extracelular/metabolismo , Hipóxia/complicações , Pulmão/inervação , Respiração , Insuficiência Respiratória/etiologia , Fatores Etários , Agrecanas/metabolismo , Animais , Animais Recém-Nascidos , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/crescimento & desenvolvimento , Condroitina ABC Liase/administração & dosagem , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Morfogênese , Lectinas de Plantas/metabolismo , Ratos Endogâmicos Lew , Receptores de N-Acetilglucosamina/metabolismo , Respiração/efeitos dos fármacos , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/prevenção & controle , Fatores de Risco
16.
Int J Mol Sci ; 19(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738516

RESUMO

Cytotoxic necrotizing factor 1 (CNF1) is a bacterial protein toxin primarily expressed by pathogenic Escherichia coli strains, causing extraintestinal infections. The toxin is believed to enhance the invasiveness of E. coli by modulating the activity of Rho GTPases in host cells, but it has interestingly also been shown to promote inflammation, stimulate host immunity and function as a potent immunoadjuvant. The mechanisms underlying the immunostimulatory properties of CNF1 are, however, poorly characterized, and little is known about the direct effects of the toxin on immune cells. Here, we show that CNF1 induces expression of maturation markers on human immature monocyte-derived dendritic cells (moDCs) without compromising cell viability. Consistent with the phenotypic maturation, CNF1 further triggered secretion of proinflammatory cytokines and increased the capacity of moDCs to stimulate proliferation of allogenic naïve CD4+ T cells. A catalytically inactive form of the toxin did not induce moDC maturation, indicating that the enzymatic activity of CNF1 triggers immature moDCs to undergo phenotypic and functional maturation. As the maturation of dendritic cells plays a central role in initiating inflammation and activating the adaptive immune response, the present findings shed new light on the immunostimulatory properties of CNF1 and may explain why the toxin functions as an immunoadjuvant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Toxinas Bacterianas/química , Células Dendríticas/efeitos dos fármacos , Proteínas de Escherichia coli/química , Inflamação/tratamento farmacológico , Adjuvantes Imunológicos/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Escherichia coli/química , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Proteínas rho de Ligação ao GTP/genética
18.
J Helminthol ; 89(4): 387-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24871674

RESUMO

The following account is based on a review lecture given recently at the British Society of Parasitology. We point out that nematode parasites cause very widespread infections of humans, particularly in economically underdeveloped areas where sanitation and hygiene are not adequate. In the absence of adequate clean water and effective vaccines, control and prophylaxis relies on anthelmintic drugs. Widespread use of anthelmintics to control nematode parasites of animals has given rise to the development of resistance and so there is a concern that similar problems will occur in humans if mass drug administration is continued. Recent research on the cholinergic anthelmintic drugs has renewed enthusiasm for the further development of cholinergic anthelmintics. Here we illustrate the use of three parasite nematode models, Ascaris suum, Oesophagostomum dentatum and Brugia malayi, microfluidic techniques and the Xenopus oocyte expression system for testing and examining the effects of cholinergic anthelmintics. We also show how the combination of derquantel, the selective nematode cholinergic antagonist and abamectin produce increased inhibition of the nicotinic acetylcholine receptors on the nematode body muscle. We are optimistic that new compounds and combinations of compounds can limit the effects of drug resistance, allowing anthelmintics to be continued to be used for effective treatment of human and animal helminth parasites.


Assuntos
Anti-Helmínticos/uso terapêutico , Colinérgicos/uso terapêutico , Helmintíase/parasitologia , Animais , Anti-Helmínticos/classificação , Helmintíase/tratamento farmacológico , Humanos , Músculos/efeitos dos fármacos , Nematoides/efeitos dos fármacos
20.
Pharmacol Ther ; 253: 108578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103794

RESUMO

The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-ß. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Fibrose Pulmonar Idiopática , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibrose , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fator de Crescimento Transformador beta1 , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA