Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Biophys J ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39014897

RESUMO

Prolyl oligopeptidases (POPs) from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and find that in the case of POPs, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure. Rather, we observe a pattern in which overall prevalence of bound interactions (salt bridges and hydrogen bonds) is conserved by using increasing numbers of increasingly short-lived interactions as temperature increases. This suggests a role for an entropic rather than energetic strategy for thermal adaptation in this protein family.

2.
Biochemistry ; 62(3): 747-758, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36656653

RESUMO

The main protease of SARS-CoV-2 (Mpro) plays a critical role in viral replication; although it is relatively conserved, Mpro has nevertheless evolved over the course of the COVID-19 pandemic. Here, we examine phenotypic changes in clinically observed variants of Mpro, relative to the originally reported wild-type enzyme. Using atomistic molecular dynamics simulations, we examine effects of mutation on protein structure and dynamics. In addition to basic structural properties such as variation in surface area and torsion angles, we use protein structure networks and active site networks to evaluate functionally relevant characters related to global cohesion and active site constraint. Substitution analysis shows a continuing trend toward more hydrophobic residues that are dependent on the location of the residue in primary, secondary, tertiary, and quaternary structures. Phylogenetic analysis provides additional evidence for the impact of selective pressure on mutation of Mpro. Overall, these analyses suggest evolutionary adaptation of Mpro toward more hydrophobicity and a less-constrained active site in response to the selective pressures of a novel host environment.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Evolução Molecular , SARS-CoV-2 , Humanos , Antivirais/farmacologia , COVID-19/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Filogenia , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteases 3C de Coronavírus/genética
3.
Annu Rev Phys Chem ; 72: 143-163, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33321054

RESUMO

α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers. Structural models show that both the C- and N-terminal extensions are important for controlling oligomerization through domain swapping. α-Crystallin prevents aggregation of damaged ß- and γ-crystallins by binding to the client protein using a variety of binding modes. α-Crystallin chaperone activity can be compromised by mutation or posttranslational modifications, leading to protein aggregation and cataract. Because of their high solubility and their ability to form large, functional oligomers, α-crystallins are particularly amenable to structure determination by solid-state nuclear magnetic resonance (NMR) and solution NMR, as well as cryo-electron microscopy.


Assuntos
Cristalino/química , Chaperonas Moleculares/química , alfa-Cristalinas/química , Animais , Cristalografia por Raios X , Peixes , Humanos , Cristalino/fisiologia , Chaperonas Moleculares/fisiologia , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Solubilidade , alfa-Cristalinas/fisiologia
4.
Chembiochem ; 22(8): 1329-1346, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33569867

RESUMO

ßγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.


Assuntos
Cristalinas/química , Cristalino/química , Humanos , Modelos Moleculares , Solubilidade
5.
Acc Chem Res ; 53(4): 863-874, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32271004

RESUMO

Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.


Assuntos
Cristalinas/química , Cristalinas/metabolismo , Agregados Proteicos , Animais , Humanos
6.
J Chem Phys ; 155(19): 194504, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800943

RESUMO

The hydroxyl radical is the primary reactive oxygen species produced by the radiolysis of water and is a significant source of radiation damage to living organisms. Mobility of the hydroxyl radical at low temperatures and/or high pressures is hence a potentially important factor in determining the challenges facing psychrophilic and/or barophilic organisms in high-radiation environments (e.g., ice-interface or undersea environments in which radiative heating is a potential heat and energy source). Here, we estimate the diffusion coefficient for the hydroxyl radical in aqueous solution using a hierarchical Bayesian model based on atomistic molecular dynamics trajectories in TIP4P/2005 water over a range of temperatures and pressures.

7.
Biochemistry ; 59(39): 3741-3756, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32931703

RESUMO

The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.


Assuntos
Betacoronavirus/enzimologia , Betacoronavirus/genética , Modelos Moleculares , Mutação , Proteínas não Estruturais Virais/genética , Domínio Catalítico , Descoberta de Drogas , Evolução Molecular , Humanos , Estrutura Molecular , Filogenia , Inibidores de Proteases/química , SARS-CoV-2 , Análise de Sequência de Proteína , Proteínas não Estruturais Virais/antagonistas & inibidores
8.
Biochemistry ; 59(25): 2371-2385, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32510933

RESUMO

Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.


Assuntos
Cobre/metabolismo , Multimerização Proteica/efeitos dos fármacos , gama-Cristalinas/metabolismo , Cobre/química , Cisteína/química , Dissulfetos/química , Humanos , Mutação , Oxirredução , Ligação Proteica , Multimerização Proteica/efeitos da radiação , Raios Ultravioleta , gama-Cristalinas/química , gama-Cristalinas/genética
9.
Biochemistry ; 58(45): 4505-4518, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31647219

RESUMO

The ßγ-crystallin superfamily contains both ß- and γ-crystallins of the vertebrate eye lens and the microbial calcium-binding proteins, all of which are characterized by a common double-Greek key domain structure. The vertebrate ßγ-crystallins are long-lived structural proteins that refract light onto the retina. In contrast, the microbial ßγ-crystallins bind calcium ions. The ßγ-crystallin from the tunicate Ciona intestinalis (Ci-ßγ) provides a potential link between these two functions. It binds calcium with high affinity and is found in a light-sensitive sensory organ that is highly enriched in metal ions. Thus, Ci-ßγ is valuable for investigating the evolution of the ßγ-crystallin fold away from calcium binding and toward stability in the apo form as part of the vertebrate lens. Here, we investigate the effect of Ca2+ and other divalent cations on the stability and aggregation propensity of Ci-ßγ and human γS-crystallin (HγS). Beyond Ca2+, Ci-ßγ is capable of coordinating Mg2+, Sr2+, Co2+, Mn2+, Ni2+, and Zn2+, although only Sr2+ is bound with comparable affinity to its preferred metal ion. The extent to which the tested divalent cations stabilize Ci-ßγ structure correlates strongly with ionic radius. In contrast, none of the tested divalent cations improved the stability of HγS, and some of them induced aggregation. Zn2+, Ni2+, and Co2+ induce aggregation by interacting with cysteine residues, whereas Cu2+-mediated aggregation proceeds via a different binding site.


Assuntos
Cálcio/metabolismo , Ciona intestinalis/metabolismo , beta-Cristalinas/metabolismo , gama-Cristalinas/metabolismo , Animais , Cátions Bivalentes/metabolismo , Ciona intestinalis/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Agregados Proteicos , Conformação Proteica , Estabilidade Proteica , beta-Cristalinas/química , gama-Cristalinas/química
10.
J Struct Biol ; 206(1): 73-89, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205196

RESUMO

Many advances in instrumentation and methodology have furthered the use of solid-state NMR as a technique for determining the structures and studying the dynamics of molecules involved in complex biological assemblies. Solid-state NMR does not require large crystals, has no inherent size limit, and with appropriate isotopic labeling schemes, supports solving one component of a complex assembly at a time. It is complementary to cryo-EM, in that it provides local, atomic-level detail that can be modeled into larger-scale structures. This review focuses on the development of high-field MAS instrumentation and methodology; including probe design, benchmarking strategies, labeling schemes, and experiments that enable the use of quadrupolar nuclei in biomolecular NMR. Current challenges facing solid-state NMR of biological assemblies and new directions in this dynamic research area are also discussed.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Proteínas/química , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Proteínas/análise , Proteínas/ultraestrutura , Reprodutibilidade dos Testes
11.
Biochim Biophys Acta ; 1860(1 Pt B): 325-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459004

RESUMO

BACKGROUND: The objective of this study was to determine whether the cataract-related G18V variant of human γS-crystallin has increased exposure of hydrophobic residues that could explain its aggregation propensity and/or recognition by αB-crystallin. METHODS: We used an ANS fluorescence assay and NMR chemical shift perturbation to experimentally probe exposed hydrophobic surfaces. These results were compared to flexible docking simulations of ANS molecules to the proteins, starting with the solution-state NMR structures of γS-WT and γS-G18V. RESULTS: γS-G18V exhibits increased ANS fluorescence, suggesting increased exposed hydrophobic surface area. The specific residues involved in ANS binding were mapped by NMR chemical shift perturbation assays, revealing ANS binding sites in γS-G18V that are not present in γS-WT. Molecular docking predicts three binding sites that are specific to γS-G18V corresponding to the exposure of a hydrophobic cavity located at the interdomain interface, as well as two hydrophobic patches near a disordered loop containing solvent-exposed cysteines, all but one of which is buried in γS-WT. CONCLUSIONS: Although both proteins display non-specific binding, more residues are involved in ANS binding to γS-G18V, and the affected residues are localized in the N-terminal domain and the nearby interdomain interface, proximal to the mutation site. GENERAL SIGNIFICANCE: Characterization of changes in exposed hydrophobic surface area between wild-type and variant proteins can help elucidate the mechanisms of aggregation propensity and chaperone recognition, presented here in the context of cataract formation. Experimental data and simulations provide complementary views of the interactions between proteins and the small molecule probes commonly used to study aggregation. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Assuntos
Catarata/metabolismo , Simulação de Acoplamento Molecular , Multimerização Proteica , gama-Cristalinas/química , gama-Cristalinas/ultraestrutura , Sítios de Ligação , Catarata/genética , Variação Genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Conformação Proteica , Propriedades de Superfície , gama-Cristalinas/genética
12.
Biochim Biophys Acta Gen Subj ; 1861(3): 636-643, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28040565

RESUMO

BACKGROUND: Carnivorous plants possess diverse sets of enzymes with novel functionalities applicable to biotechnology, proteomics, and bioanalytical research. Chitinases constitute an important class of such enzymes, with future applications including human-safe antifungal agents and pesticides. Here, we compare chitinases from the genome of the carnivorous plant Drosera capensis to those from related carnivorous plants and model organisms. METHODS: Using comparative modeling, in silico maturation, and molecular dynamics simulation, we produce models of the mature enzymes in aqueous solution. We utilize network analytic techniques to identify similarities and differences in chitinase topology. RESULTS: Here, we report molecular models and functional predictions from protein structure networks for eleven new chitinases from D. capensis, including a novel class IV chitinase with two active domains. This architecture has previously been observed in microorganisms but not in plants. We use a combination of comparative and de novo structure prediction followed by molecular dynamics simulation to produce models of the mature forms of these proteins in aqueous solution. Protein structure network analysis of these and other plant chitinases reveal characteristic features of the two major chitinase families. GENERAL SIGNIFICANCE: This work demonstrates how computational techniques can facilitate quickly moving from raw sequence data to refined structural models and comparative analysis, and to select promising candidates for subsequent biochemical characterization. This capability is increasingly important given the large and growing body of data from high-throughput genome sequencing, which makes experimental characterization of every target impractical.


Assuntos
Quitinases/genética , Quitinases/metabolismo , Drosera/genética , Drosera/metabolismo , Genoma de Planta/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Filogenia , Domínios Proteicos/genética
13.
J Phys Chem A ; 121(38): 7089-7098, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28892384

RESUMO

We report the formation kinetics of trifluoromethane clathrate hydrate (CH) from less than 75 µm diameter ice particles and CHF3 gas. As previously observed for difluoromethane and propane hydrate formation, the initial stages of the reaction exhibit a strong negative correlation of the reaction rate with temperature, consistent with a negative activation energy of formation. The values obtained for trifluoromethane, ca. -6 kJ/mol (H2O), are similar to those for difluoromethane, even though the two molecules have different intermolecular interactions and sizes. The activation energy is lesser per mole of H2O, but greater per mole of guest molecule, than for propane hydrate, which has a different crystal structure. We propose a possible explanation for the negative activation barrier based on the stabilization of metastable structures at low temperature. A pronounced dependence of the formation kinetics on the gas flow rate into the cell is observed. At 253 K and a flow rate of 15 mmol/h, the stage II enclathration of trifluoromethane proceeds so quickly that the overpressure, the difference between the gas cell pressure and the hydrate vapor pressure, is only 0.06 MPa.

14.
Biochemistry ; 55(50): 6961-6968, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27992995

RESUMO

The tunicate (Ciona intestinalis) ßγ-crystallin represents an intermediate case between the calcium-binding proteins ancestral to the vertebrate ßγ-crystallin fold and the vertebrate structural crystallins. Unlike the structural ßγ-crystallins in the vertebrate eye lens, this ßγ-crystallin strongly binds Ca2+. Furthermore, Ca2+ binding greatly stabilizes the protein, an effect that has previously been observed in microbial ßγ-crystallins but not in those of vertebrates. This relationship between binding and protein stabilization makes the tunicate ßγ-crystallin an interesting model for studying the evolution of the human ßγ-crystallin. We also compare and contrast the binding sites of tunicate ßγ-crystallin with those of other ßγ-crystallins to develop hypotheses about the functional origin of the lack of Ca2+-binding sites in human crystallins.


Assuntos
Cálcio/metabolismo , Ciona intestinalis/metabolismo , Cristalino/metabolismo , beta-Cristalinas/química , gama-Cristalinas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dicroísmo Circular , Evolução Molecular , Humanos , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , beta-Cristalinas/metabolismo , gama-Cristalinas/metabolismo
15.
Proteins ; 84(10): 1517-33, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27353064

RESUMO

In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a "ferment" similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. Proteins 2016; 84:1517-1533. © 2016 Wiley Periodicals, Inc.


Assuntos
Carnivoridade/fisiologia , Drosera/genética , Droseraceae/genética , Genoma de Planta , Peptídeo Hidrolases/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Domínio Catalítico , Mapeamento de Sequências Contíguas , Drosera/classificação , Droseraceae/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Simulação de Acoplamento Molecular , Anotação de Sequência Molecular , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
16.
J Am Chem Soc ; 138(16): 5392-402, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27052457

RESUMO

We demonstrate that the effect of protein crowding is critically dependent on the stability of the protein's hydration shell, which can dramatically vary between different proteins. In the human eye lens, γS-crystallin (γS-WT) forms a densely packed transparent hydrogel with a high refractive index, making it an ideal system for studying the effects of protein crowding. A single point mutation generates the cataract-related variant γS-G18V, dramatically altering the optical properties of the eye lens. This system offers an opportunity to explore fundamental questions regarding the effect of protein crowding, using γS-WT and γS-G18V: (i) how do the diffusion dynamics of hydration water change as a function of protein crowding?; and (ii) upon hydrogel formation of γS-WT, has a dynamic transition occurred generating a single population of hydration water, or do populations of bulk and hydration water coexist? Using localized spin probes, we separately probe the local translational diffusivity of both surface hydration and interstitial water of γS-WT and γS-G18V in solution. Surprisingly, we find that under the influence of hydrogel formation at highly crowded γS-WT concentrations up to 500 mg/mL, the protein hydration shell remains remarkably dynamic, slowing by less than a factor of 2, if at all, compared to that in dilute protein solutions of ∼5 mg/mL. Upon self-crowding, the population of this robust surface hydration water increases, while a significant bulk-like water population coexists even at ∼500 mg/mL protein concentrations. In contrast, surface water of γS-G18V irreversibly dehydrates with moderate concentration increases or subtle alterations to the solution conditions, demonstrating that the effect of protein crowding is highly dependent on the stability of the protein-specific hydration shell. The core function of γS-crystallin in the eye lens may be precisely its capacity to preserve a robust hydration shell, whose stability is abolished by a single G18V mutation.


Assuntos
gama-Cristalinas/química , gama-Cristalinas/genética , Amidas/química , Catarata/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Hidrogéis/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Mutação , Estabilidade Proteica , Água/química
17.
J Biomol NMR ; 64(4): 269-73, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27108020

RESUMO

Many nucleic acids and proteins require divalent metal ions such as Mg(2+) and Ca(2+) for folding and function. The lipophilic alignment media frequently used as membrane mimetics also bind these divalent metals. Here we demonstrate the use of (31)P NMR spectrum of a metal ion chelator (deoxycytidine diphosphate) to measure the bound [Mg(2+)] and [Ca(2+)] in situ for several biological model systems at relatively high divalent ion concentrations (1-10 mM). This method represents a general approach to measuring divalent metal ion binding in NMR samples where the amount and type of metal ion added to the system is known.


Assuntos
Íons/química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética , Metais/química , Concentração de Íons de Hidrogênio , Temperatura
18.
Biomolecules ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786000

RESUMO

Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and ßγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the ßγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens ßγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in ßB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even ß-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.


Assuntos
Cisteína , Cristalino , gama-Cristalinas , gama-Cristalinas/metabolismo , gama-Cristalinas/química , gama-Cristalinas/genética , Cisteína/metabolismo , Cisteína/química , Humanos , Cristalino/metabolismo , Cristalino/química , Animais , Catarata/metabolismo
19.
J Magn Reson Open ; 182024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444623

RESUMO

We describe an automated hands-off bench testing method for measuring the magnetic field profile of transceiver coils for nuclear magnetic resonance (NMR). The scattering parameter (S-parameter) data is measured using a portable network analyzer, and the results are automatically exported to a computer for plotting and viewing. This assay dramatically reduces the time needed to measure the magnetic field (B1) homogeneity profile of a transceiver coil while also improving accuracy relative to manual operation. Here, we demonstrate the method on a saddle coil of a solution-state NMR probe in comparison to profiles obtained using NMR spectroscopy measurements. We also measure the axial and radial homogeneity of a variable-pitch solenoid.

20.
Biomolecules ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830697

RESUMO

Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria. Using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis, we examine both conserved features and trends across thermal groups. Our findings suggest a number of hypotheses for experimental investigation.


Assuntos
Extremófilos , Proteínas/metabolismo , Carboxipeptidases/metabolismo , Adaptação Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA