Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nat Rev Genet ; 21(7): 389-409, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32300217

RESUMO

Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.


Assuntos
Aquicultura , Cruzamento , Genômica , Adaptação Biológica , Animais , Animais Domésticos , Animais Selvagens , Biodiversidade , Domesticação , Meio Ambiente , Epigênese Genética , Edição de Genes , Interação Gene-Ambiente , Predisposição Genética para Doença , Genoma , Genômica/métodos , Seleção Genética , Seleção Artificial
2.
Fish Shellfish Immunol ; 150: 109653, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801843

RESUMO

Land-based recirculating aquaculture systems (RAS) have risen in prevalence in recent years for Atlantic salmon production, enabling intensive production which allows increased growth and environmental control, but also having the potential for reducing water use and eutrophication. The Atlantic salmon has an anadromous life history with juvenile stages in freshwater (FW) and on-growing in seawater (SW), enabled by a transformational process known as smoltification. The timing of smoltification and transfer of smolts from FW to SW is critical under commercial production with high mortalities during this period. The impact of FW rearing system on immune function following seawater transfer (SWT) is not well understood. In this study parr were raised in either RAS or a traditional open-LOCH system until smolting and then transferred to a common marine environment. Two-weeks post-SWT fish were immune stimulated with a viral mimic (poly I:C) for 24 h to assess the ability to mount an antiviral immune response, assessed by whole transcriptome analysis of gill tissue, an important immune organ in fish. We show that unstimulated smolts reared in the LOCH had higher immune gene expression than those reared in RAS as determined by functional analysis. However, following stimulation, smolts reared in the RAS mounted a greater magnitude of response with a suite of immune genes displaying higher fold induction of transcription compared to LOCH reared smolts. We suggest RAS smolts have a lower steady state immune-associated transcriptome likely due to an unvarying environment, in terms of environmental factors and lack of exposure to pathogens, which shows a compensatory mechanism following stimulation allowing immune 'catch-up' with those reared in the LOCH. Alternatively, the RAS fish are experiencing an excessive response to the immune stimulation.


Assuntos
Aquicultura , Água Doce , Brânquias , Salmo salar , Água do Mar , Animais , Água do Mar/química , Salmo salar/imunologia , Brânquias/imunologia , Poli I-C/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Imunidade Inata
3.
Fish Shellfish Immunol ; 145: 109358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176627

RESUMO

The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt + subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt + B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Salmo salar , Animais , Baço , Células Endoteliais
4.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181891

RESUMO

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Regulação da Expressão Gênica , Rim Cefálico , Células Endoteliais , Perfilação da Expressão Gênica/veterinária , Transcriptoma , RNA Nuclear Pequeno , Mamíferos
5.
Genomics ; 115(4): 110663, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286012

RESUMO

Antiviral innate immunity is orchestrated by the interferon system, which appeared in ancestors of jawed vertebrates. Interferon upregulation induces hundreds of interferon-stimulated-genes (ISGs) with effector or regulatory functions. Here we investigated the evolutionary diversification of ISG responses through comparison of two salmonid fishes, accounting for the impact of sequential whole genome duplications ancestral to teleosts and salmonids. We analysed the transcriptomic response of the IFN pathway in the head kidney of rainbow trout and Atlantic salmon, which separated 25-30 Mya. We identified a large set of ISGs conserved in both species and cross-referenced them with zebrafish and human ISGs. In contrast, around one-third of salmonid ISG lacked orthologs in human, mouse, chicken or frog, and often between rainbow trout and Atlantic salmon, revealing a fast-evolving, lineage-specific arm of the antiviral response. This study also provides a key resource for in-depth functional analysis of ISGs in salmonids of commercial significance.


Assuntos
Oncorhynchus mykiss , Peixe-Zebra , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Genoma , Oncorhynchus mykiss/genética , Interferons/genética , Antivirais/farmacologia
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718723

RESUMO

The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent "explosion" of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial "wave" of rediploidization in the late Cretaceous (85-106 Ma). This was followed by a period of relative genomic stasis lasting 17-39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.


Assuntos
Salmonidae , Animais , Evolução Molecular , Duplicação Gênica , Genoma , Filogenia , Salmonidae/genética
7.
BMC Genomics ; 23(1): 775, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443659

RESUMO

BACKGROUND: Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS: Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS: Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.


Assuntos
Isavirus , Salmo salar , Animais , Rim Cefálico , Salmo salar/genética , Baço , Brânquias , Transcriptoma , Inflamassomos
8.
BMC Microbiol ; 21(1): 313, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758745

RESUMO

BACKGROUND: Understanding the influence of methodology on results is an essential consideration in experimental design. In the expanding field of fish microbiology, many best practices and targeted techniques remain to be refined. This study aimed to compare microbial assemblages obtained from Atlantic salmon (Salmo salar) gills by swabbing versus biopsy excision. Results demonstrate the variation introduced by altered sampling strategies and enhance the available knowledge of the fish gill microbiome. RESULTS: The microbiome was sampled using swabs and biopsies from fish gills, with identical treatment of samples for 16S next generation Illumina sequencing. Results show a clear divergence in microbial communities obtained through the different sampling strategies, with swabbing consistently isolating a more diverse microbial consortia, and suffering less from the technical issue of host DNA contamination associated with biopsy use. Sequencing results from biopsy-derived extractions, however, hint at the potential for more cryptic localisation of some community members. CONCLUSIONS: Overall, results demonstrate a divergence in the obtained microbial community when different sampling methodology is used. Swabbing appears a superior method for sampling the microbiota of mucosal surfaces for broad ecological research in fish, whilst biopsies might be best applied in exploration of communities beyond the reach of swabs, such as sub-surface and intracellular microbes, as well as in pathogen diagnosis. Most studies on the external microbial communities of aquatic organisms utilise swabbing for sample collection, likely due to convenience. Much of the ultrastructure of gill tissue in live fish is, however, potentially inaccessible to swabbing, meaning swabbing might fail to capture the full diversity of gill microbiota. This work therefore also provides valuable insight into partitioning of the gill microbiota, informing varied applications of different sampling methods in experimental design for future research.


Assuntos
Bactérias/isolamento & purificação , Brânquias/microbiologia , Microbiota , Salmo salar/microbiologia , Animais , Aquicultura , Bactérias/classificação , Bactérias/genética , Filogenia , Pele/microbiologia , Manejo de Espécimes
9.
J Immunol ; 203(2): 465-475, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142600

RESUMO

IFN belong to a group of cytokines specialized in the immunity to viruses. Upon viral infection, type I IFN is produced and alters the transcriptome of responding cells through induction of a set of IFN stimulated genes (ISGs) with regulatory or antiviral function, resulting in a cellular antiviral state. Fish genomes have both type I IFN and type II IFN (IFN-γ), but no type III (λ) IFN has been identified. Their receptors are not simple counterparts of the mammalian type I/II IFN receptors, because alternative chains are used in type I IFN receptors. The mechanisms of the downstream signaling remain partly undefined. In mammals, members of the signal transducer and activator of family of transcription factors are responsible for the transmission of the signal from cytokine receptors, and STAT2 is required for type I but not type II IFN signaling. In fish, its role in IFN signaling in fish remains unclear. We isolated a Chinook salmon (Oncorhynchus tshawytscha) cell line, GS2, with a stat2 gene knocked out by CRISPR/Cas9 genome editing. In this cell line, the induction of ISGs by stimulation with a recombinant type I IFN is completely obliterated as evidenced by comparative RNA-seq analysis of the transcriptome of GS2 and its parental counterpart, EC. Despite a complete absence of ISGs induction, the GS2 cell line has a remarkable ability to resist to viral infections. Therefore, other STAT2-independent pathways may be induced by the viral infection, illustrating the robustness and redundancy of the innate antiviral defenses in fish.


Assuntos
Peixes/metabolismo , Interferon Tipo I/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais/fisiologia , Animais , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular , Edição de Genes/métodos , Viroses/metabolismo
10.
BMC Biotechnol ; 20(1): 35, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576161

RESUMO

BACKGROUND: Genome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques. RESULTS: In the current study, we developed an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214). As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated. CONCLUSIONS: The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance.


Assuntos
Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Lentivirus/genética , Salmonidae/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Sobrevivência Celular , Resistência à Doença/genética , Genoma
11.
BMC Genomics ; 19(1): 719, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285610

RESUMO

BACKGROUND: High-throughput proteomics was used to determine the role of the fish liver in defense responses to bacterial infection. This was done using a rainbow trout (Oncorhynchus mykiss) model following infection with Aeromonas salmonicida, the causative agent of furunculosis. The vertebrate liver has multifaceted functions in innate immunity, metabolism, and growth; we hypothesize this tissue serves a dual role in supporting host defense in parallel to metabolic adjustments that promote effective immune function. While past studies have reported mRNA responses to A. salmonicida in salmonids, the impact of bacterial infection on the liver proteome remains uncharacterized in fish. RESULTS: Rainbow trout were injected with A. salmonicida or PBS (control) and liver extracted 48 h later for analysis on a hybrid quadrupole-Orbitrap mass spectrometer. A label-free method was used for protein abundance profiling, which revealed a strong innate immune response along with evidence to support parallel rewiring of metabolic and growth systems. 3076 proteins were initially identified against all proteins (n = 71,293 RefSeq proteins) annotated in a single high-quality rainbow trout reference genome, of which 2433 were maintained for analysis post-quality filtering. Among the 2433 proteins, 109 showed significant differential abundance following A. salmonicida challenge, including many upregulated complement system and acute phase response proteins, in addition to molecules with putative functions that may support metabolic re-adjustments. We also identified novel expansions in the complement system due to gene and whole genome duplication events in salmonid evolutionary history, including eight C3 proteins showing differential changes in abundance. CONCLUSIONS: This study provides the first high-throughput proteomic examination of the fish liver in response to bacterial challenge, revealing novel markers for the host defense response, and evidence of metabolic remodeling in conjunction with activation of innate immunity.


Assuntos
Aeromonas salmonicida/fisiologia , Proteínas de Peixes/metabolismo , Fígado/metabolismo , Fígado/microbiologia , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/microbiologia , Proteômica , Animais , Ontologia Genética , Fígado/imunologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/imunologia , Mapeamento de Interação de Proteínas
12.
J Exp Biol ; 221(Pt 13)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29700060

RESUMO

Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system - an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterising muscle immune responses in size-matched coho salmon (Oncorhynchus kisutch) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth - a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30 h post-injection with phosphate-buffered saline (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared with wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation.


Assuntos
Hormônio do Crescimento/metabolismo , Imunidade Inata/genética , Músculo Esquelético/imunologia , Oncorhynchus kisutch/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/imunologia , Técnicas de Transferência de Genes/veterinária , Hormônio do Crescimento/genética , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/crescimento & desenvolvimento , Receptor Cross-Talk/fisiologia
13.
BMC Genomics ; 18(1): 484, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655320

RESUMO

We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.


Assuntos
Aquicultura , Conservação dos Recursos Naturais , Genômica , Internacionalidade , Anotação de Sequência Molecular , Salmonidae/genética , Animais , Evolução Molecular , Genômica/economia , Genômica/normas , Fenótipo , Filogenia
14.
Br J Nutr ; 118(12): 1010-1022, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29151385

RESUMO

The replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability of n-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient of n-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1-D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient of n-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2 and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1-D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression of ß-oxidation and stimulation of srebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fed n-3 LC-PUFA deficient diets.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Óleos de Peixe/administração & dosagem , Óleo de Brassica napus/administração & dosagem , Dourada/metabolismo , Óleo de Soja/administração & dosagem , Ração Animal/análise , Animais , Dieta/veterinária , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
15.
Gen Comp Endocrinol ; 247: 53-65, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28109823

RESUMO

Much attention has been given to insulin-like growth factor (Igf) pathways that regulate the balance of skeletal muscle protein synthesis and breakdown in response to a range of extrinsic and intrinsic signals. However, we have a less complete understanding of how the same signals modulate muscle mass upstream of such signalling, through a family of functionally-diverse Igf-binding proteins (Igfbps) that modify the availability of Igfs to the cell receptor Igf1r. We exposed cultured myotubes from Atlantic salmon (Salmo salar L.) to treatments recapturing three catabolic signals: inflammation (interleukin-1ß), stress (dexamethasone) and fasting (amino acid deprivation), plus one anabolic signal: recovery of muscle mass post-fasting (supplementation of fasted myotubes with Igf-I and amino acids). The intended phenotype of treatments was confirmed by significant changes in myotube diameter and immunofluorescent staining of structural proteins. We quantified the mRNA-level regulation of the full expressed Igf and Igfbp gene complement across a post-treatment time course, along with marker genes for muscle structural protein synthesis, as well as muscle breakdown, via the ubiquitin-proteasome and autophagy systems. Our results highlight complex, non-overlapping responses of Igfbp family members to the different treatments, suggesting that the profile of expressed Igfbps is differentially regulated by distinct signals promoting similar muscle remodelling phenotypes. We also demonstrate divergent regulation of salmonid-specific gene duplicates of igfbp5b1 and igfbp5b2 under distinct catabolic and anabolic conditions. Overall, this study increases our understanding of the regulation of Igfbp genes in response to signals that promote remodelling of skeletal muscle.


Assuntos
Regulação da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fibras Musculares Esqueléticas/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Aminoácidos/deficiência , Animais , Células Cultivadas , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Interleucina-1beta/farmacologia , Modelos Lineares , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Aquaculture ; 467: 149-157, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28111483

RESUMO

Gut microbes are key players in host immune system priming, protection and development, as well as providing nutrients to the host that would be otherwise unavailable. Due to this importance, studies investigating the link between host and microbe are being initiated in farmed fish. The establishment, maintenance and subsequent changes of the intestinal microbiota are central to define fish physiology and nutrition in the future. In fish, unlike mammals, acquiring intestinal microbes is believed to occur around the time of first feeding mainly from the water surrounding them and their microbial composition over time is shaped therefore by their habitat. Here we compare the distal intestine microbiota of Atlantic salmon parr reared in a recirculating laboratory aquarium with that of age matched parr maintained in cage culture in an open freshwater loch environment of a commercial fish farm to establish the microbial profiles in the gut at the freshwater stage and investigate if there is a stable subset of bacteria present regardless of habitat type. We used deep sequencing across two variable regions of the 16S rRNA gene, with a mean read depth of 180,144 ± 12,096 raw sequences per sample. All individual fish used in this study had a minimum of 30,000 quality controlled reads, corresponding to an average of 342 ± 19 Operational Taxonomic Units (OTUs) per sample, which predominantly mapped to the phyla Firmicutes, Proteobacteria, and Tenericutes. The results indicate that species richness is comparable between both treatment groups, however, significant differences were found in the compositions of the gut microbiota between the rearing groups. Furthermore, a core microbiota of 19 OTUs was identified, shared by all samples regardless of treatment group, mainly consisting of members of the phyla Proteobacteria, Bacteroidetes and Firmicutes. Core microbiotas of the individual rearing groups were determined (aquarium fish: 19 + 4 (total 23) OTUs, loch fish: 19 + 13 (total 32) OTUs), indicating that microbe acquisition or loss is occurring differently in the two habitats, but also that selective forces are acting within the host, offering niches to specific bacterial taxa. The new information gathered in this study by the Illumina MiSeq approach will be useful to understand and define the gut microbiota of healthy Atlantic salmon in freshwater and expand on previous studies using DGGE, TGGE and T-RFPL. Monitoring deviations from these profiles, especially the core microbes which are present regardless of habitat type, might be used in the future as early indicator for intestinal health issues caused by sub optimal feed or infectious diseases in the farm setting. STATEMENT OF RELEVANCE: The Microbiome is central to gut health, local immune function and nutrient up take. We have used deep sequencing approach to show differences in rearing conditions of Atlantic salmon. This work is of interest to aquaculture nutritionists.

17.
BMC Genomics ; 17: 156, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26925977

RESUMO

BACKGROUND: The potential for alternative plant protein sources to replace limited marine ingredients in fish feeds is important for the future of the fish farming industry. However, plant ingredients in fish feeds contain antinutritional factors (ANFs) that can promote gut inflammation (enteritis) and compromise fish health. It is unknown whether enteritis induced by plant materials with notable differences in secondary metabolism is characterised by common or distinct gene expression patterns, and how using feeds with single vs mixed plant proteins may affect the gut transcriptome and fish performance. We used Atlantic salmon parr to investigate the transcriptome responses of distal gut to varying dietary levels (0-45%) of soy protein concentrate (SPC) and faba bean (Vicia faba) protein concentrate (BPC) following an 8-week feeding trial. Soybean meal (SBM) and fish meal (FM) were used as positive and negative controls for enteritis, respectively. Gene expression profiling was performed using a microarray platform developed and validated for Atlantic salmon. RESULTS: Different plant protein materials (SPC, BPC and SBM) generated substantially different gut gene expression profiles, with relatively few transcriptomic alterations (genes, pathways and GO terms) common for all plant proteins used. When SPC and BPC were simultaneously included in the diet, they induced less extensive alterations of gut transcriptome than diets with either SPC or BPC singly, probably due to reduced levels of individual ANFs. The mixed plant protein diets were also associated with improved body composition of fish relative to the single plant protein diets, which may provide evidence for a link between the magnitude of changes in gut transcriptome and whole-animal performance. CONCLUSIONS: Our results indicate that gut transcriptomic profiling provides a useful tool for testing the applicability of alternative protein sources for aquaculture feeds and designing diets with reduced impact of ANFs on fish health. Ultimately, understanding diet-gut interactions and intestinal homeostasis in farmed fish is important to maximise performance and to ensure that aquaculture continues to be a sustainable source of food for a growing world population.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Proteínas de Vegetais Comestíveis/química , Salmo salar/metabolismo , Transcriptoma , Animais , Aquicultura , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Fenótipo , Glycine max/química , Vicia faba/química
18.
Br J Nutr ; 116(9): 1656-1665, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27813470

RESUMO

In farmed fish, selective breeding for feed conversion ratio (FCR) may be possible via indirectly selecting for easily-measured indicator traits correlated with FCR. We tested the hypothesis that rainbow trout with low lipid% have genetically better FCR, and that lipid% may be genetically related to retention efficiency of macronutrients, making lipid% a useful indicator trait. A quantitative genetic analysis was used to quantify the benefit of replacing feed intake in a selection index with one of three lipid traits: body lipid%, muscle lipid% or viscera% weight of total body weight (reflecting visceral lipid). The index theory calculations showed that simultaneous selection for weight gain and against feed intake (direct selection to improve FCR) increased the expected genetic response in FCR by 1·50-fold compared with the sole selection for growth. Replacing feed intake in the selection index with body lipid%, muscle lipid% or viscera% increased genetic response in FCR by 1·29-, 1·49- and 1·02-fold, respectively, compared with the sole selection for growth. Consequently, indirect selection for weight gain and against muscle lipid% was almost as effective as direct selection for FCR. Fish with genetically low body and muscle lipid% were more efficient in turning ingested protein into protein weight gain. Both physiological and genetic mechanisms promote the hypothesis that low-lipid% fish are more efficient. These results highlight that in breeding programmes of rainbow trout, control of lipid deposition improves not only FCR but also protein-retention efficiency. This improves resource efficiency of aquaculture and reduces nutrient load to the environment.


Assuntos
Adiposidade , Ingestão de Energia , Modelos Biológicos , Oncorhynchus mykiss/fisiologia , Seleção Genética , Seleção Artificial , Animais , Aquicultura , Dieta com Restrição de Gorduras/veterinária , Gorduras na Dieta/análise , Feminino , Finlândia , Gordura Intra-Abdominal/química , Gordura Intra-Abdominal/crescimento & desenvolvimento , Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos , Masculino , Nutrigenômica/métodos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Distribuição Aleatória , Alimentos Marinhos/análise , Aumento de Peso
19.
Fish Shellfish Immunol ; 42(2): 297-305, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462555

RESUMO

Salmonid alphavirus (SAV), the aetiological agent of pancreas disease, is recognized as a serious pathogen of farmed Atlantic salmon. This disease results in loss of weight followed by poor growth of surviving fish, as such it is viewed as a wasting disease. SAV and other chronic disease causing viruses affect the heart and skeletal muscle tissues, at present the mechanisms by which pathology occurs is unknown. The relationship between antiviral activity and other physiological parameters especially in skeletal muscle are currently not examined in depth in fish. An experimental SAV (isotype 3) infection was carried out using a cohabitation approach, from which samples were collected at 0, 4, 8 & 12 week post challenge. Maximum viral load in the muscle tissue was 4 weeks post infection which was reduced at 8 weeks and undetectable by 12 weeks. Histopathology score peaked at 4 weeks post infection in pancreas and heart whereas there was maximum damage in skeletal muscle at 8 weeks. The peak expression of antiviral immune genes coincided with the viral load. Several genes involved in protein degradation were increased following infection including atrogin-1 and cathepsin D, at 4 weeks post challenge suggesting reallocation of amino acid reserves. Taken together, these observations increase our understanding of salmon poor growth during viral infection, and will serve as a basis to develop strategies to manage this viral wasting disease.


Assuntos
Infecções por Alphavirus/veterinária , Antivirais/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Salmo salar , Alphavirus/fisiologia , Infecções por Alphavirus/genética , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Metabolismo Energético , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Músculo Esquelético/virologia , Proteólise , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Carga Viral/veterinária
20.
Fish Shellfish Immunol ; 41(1): 102-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24981291

RESUMO

Interleukin (IL)-27 is an IL-6/IL-12 family member with pro-inflammatory and anti-inflammatory properties. It is a heterodimeric cytokine composed of an α-chain p28 and a ß-chain Ebi3 (Epstein-Barr virus induce gene 3). The p28 subunit can also be secreted as a monomer and function as IL-30 that acts as an inhibitor of IL-27 signalling. At present, the p28 gene has only been described in mammals. Thus, for the first time outwith mammals, we have identified seven p28 molecules in six divergent teleost fish species, Atlantic salmon, two cichlids, two cyprinids and a yellowtail. The fish p28 molecules have higher similarities to mammalian p28 than other IL-6/12 family members. Critical residues involved in the interaction with Ebi3 and the receptor gp130 are highly conserved. The prediction that these are true orthologues is supported by phylogenetic and synteny analysis. Two p28 paralogues (p28a and p28b) sharing 72% aa identity have been identified and characterised in Atlantic salmon. There are multiple upstream ATGs in the 5'-UTR and ATTTA motifs in the 3'-UTR of both cDNA sequences, suggesting regulation at the post-transcriptional and translational level. Both salmon p28 genes are highly expressed in immune relevant tissues, such as thymus, gills, spleen and head kidney. Conversely salmon Ebi3 is highly expressed in other organs, such as liver and caudal kidney. The expression of p28 but not Ebi3 was induced by PAMPs and recombinant cytokines in head kidney cells, and in spleen by Poly I:C challenge in vivo. The dissociation of the expression and modulation of p28 and Ebi3 suggest that both p28 and Ebi3 may be secreted alone or with other partners.


Assuntos
Regulação da Expressão Gênica/imunologia , Interleucina-27/imunologia , Filogenia , Salmo salar/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Interleucina-27/genética , Dados de Sequência Molecular , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Salmo salar/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA