RESUMO
KEY MESSAGE: Sustainable control of fall armyworm (FAW) requires implementation of effective integrated pest management (IPM) strategies, with host plant resistance as a key component. Significant opportunities exist for developing and deploying elite maize cultivars with native genetic resistance and/or transgenic resistance for FAW control in both Africa and Asia. The fall armyworm [Spodoptera frugiperda (J.E. Smith); FAW] has emerged as a serious pest since 2016 in Africa, and since 2018 in Asia, affecting the food security and livelihoods of millions of smallholder farmers, especially those growing maize. Sustainable control of FAW requires implementation of integrated pest management strategies, in which host plant resistance is one of the key components. Significant strides have been made in breeding elite maize lines and hybrids with native genetic resistance to FAW in Africa, based on the strong foundation of insect-resistant tropical germplasm developed at the International Maize and Wheat Improvement Center, Mexico. These efforts are further intensified to develop and deploy elite maize cultivars with native FAW tolerance/resistance and farmer-preferred traits suitable for diverse agro-ecologies in Africa and Asia. Independently, genetically modified Bt maize with resistance to FAW is already commercialized in South Africa, and in a few countries in Asia (Philippines and Vietnam), while efforts are being made to commercialize Bt maize events in additional countries in both Africa and Asia. In countries where Bt maize is commercialized, it is important to implement a robust insect resistance management strategy. Combinations of native genetic resistance and Bt maize also need to be explored as a path to more effective and sustainable host plant resistance options. We also highlight the critical gaps and priorities for host plant resistance research and development in maize, particularly in the context of sustainable FAW management in Africa and Asia.
Assuntos
Defesa das Plantas contra Herbivoria , Zea mays , Zea mays/genética , Ásia , África do Sul , MéxicoRESUMO
Two new modified Bacillus thuringiensis (Bt) proteins, Cry1Da_7 and Cry1B.868, with activity against fall armyworms (FAW), Spodoptera frugiperda (J.E. Smith), were evaluated for their potential to bind new insect receptors compared to proteins currently deployed as plant-incorporated protectants (PIPs) in row crops. Results from resistant insect bioassays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that receptor utilizations of the newly modified Cry1Da_7 and Cry1B.868 proteins are distinct from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Accordingly, these two proteins target different insect proteins in FAW midgut cells and when pyramided together should provide durability in the field against this economically important pest.IMPORTANCE There is increased concern with the development of resistance to insecticidal proteins currently expressed in crop plants, especially against high-resistance-risk pests such as fall armyworm (FAW), Spodoptera frugiperda, a maize pest that already has developed resistance to Bacillus thuringiensis (Bt) proteins such as Cry1F. Lepidopteran-specific proteins that bind new insect receptors will be critical in managing current Cry1F-resistant FAW and delaying future resistance development. Results from resistant insect assays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that target receptors of the Cry1Da_7 and Cry1B.868 proteins are different from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Therefore, pyramiding these two new proteins in maize will provide durable control of this economically important pest in production agriculture.
Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Ligação Proteica , Spodoptera/genética , Zea mays/parasitologiaRESUMO
BACKGROUND: Rachiplusia nu (Guenée) was historically a secondary soybean pest in Brazil, but a key soybean pest in Argentina. From 2021 onwards, injury caused by R. nu has been reported in soybean that expresses the Cry1Ac toxin from Bacillus thuringiensis (Berliner) in both countries. In this study, we selected resistant and susceptible strains of R. nu to Cry1Ac using Cry1Ac-containing leaf tissue and characterized the inheritance of resistance, cross-resistance patterns and fitness cost. RESULTS: Neonates of the Cry1Ac-resistant strain of R. nu were able to develop on Cry1Ac soybean leaves and emerge as fertile adults, while neonates from the susceptible and heterozygous strains did not survive beyond 10 days. The resistance ratio to Cry1Ac estimated in diet-overlay bioassays in the resistant strain was > 736.92-fold. The inheritance pattern of Cry1Ac resistance in R. nu was characterized as autosomal recessive and monogenic. The Cry1Ac-resistant strain of R. nu also exhibited high resistance to Cry1A.105 (resistance ratio > 159.87-fold), but negligible resistance to Cry2Ab2 (resistance ratio = 1.25-fold). Life history data showed that the resistance to Cry1Ac in R. nu is not associated with a substantial fitness cost. CONCLUSIONS: The inheritance pattern of Cry1Ac resistance in R. nu is autosomal recessive, monogenic and not associated with obvious fitness costs. Cross-resistance occurred between Cry1Ac and Cry1A.105 in R. nu but not between Cry1Ac and Cry2Ab2, indicating that Cry1A.105/Cry2Ab2/Cry1Ac soybean is a valuable tool to manage Cry1Ac resistance in R. nu. This is the first study reporting the genetic basis of Cry1Ac resistance in R. nu. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.
RESUMO
BACKGROUND: Soybean is the third-greatest global commodity crop with respect to grain production, Brazil is the largest soybean producer in the world. We performed the first extensive survey including all the five main soybean cultivation regions in Brazil over three seasons (2018/2019, 2019/2020, and 2020/2021). A total of 2386 localities were sampled, corresponding to 145 municipalities in 11 states. Sampling was carried out between the R1 and R8 soybean growth stages, using a beating sheet. RESULTS: Fifteen species were recorded, with five species accounting for more than 99% of the sampled insects. The Neotropical brown stink bug, Euschistus heros (F.), was the most abundant species (82.4% of the adults and 84.1% of the nymphs overall), with differences in the mean abundance between soybean macroregions. The melacanthus green belly stink bug, Diceraeus melacanthus Dallas was the second most abundant species overall, followed by the brown winged stink bug, Edessa meditabunda (F.), the furcatus green belly stink bug, Diceraeus furcatus (F.) and the red-banded green stink bug, Piezodorus guildinii (Westwood). The relative abundance of each species differed between soybean macroregions. The mean abundance of nymphs and adults of Euschistus heros at different soybean reproductive stages showed an increase from early reproductive stages to the beginning of the late reproductive stages (R5 or R6). CONCLUSION: This large-scale assessment of stink bugs provides a basis for outlining integrated pest management programs and drives the development of monitoring and control strategies, as well as future studies investigating population dynamics over time and space in soybean fields. © 2024 Society of Chemical Industry.
Assuntos
Glycine max , Heterópteros , Ninfa , Animais , Glycine max/crescimento & desenvolvimento , Brasil , Heterópteros/crescimento & desenvolvimento , Heterópteros/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Densidade Demográfica , Produtos Agrícolas/crescimento & desenvolvimentoRESUMO
Genetically modified MON 89034 corn (Zea mays L.) expressing Bacillus thuringiensis (Bt) insecticidal proteins, viz. Cry1A.105 and Cry2Ab2, is a biotechnological option being considered for the management of the major corn pest in Indonesia, the Asian corn borer (Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)). As a part of a proactive resistance-management program for MON 89034 corn in Indonesia, we assessed the baseline susceptibility of field-collected populations of O. furnacalis to Cry1A.105 and Cry2Ab2 proteins. Dose-response bioassays using the diet-dipping method indicated that the lethal concentration (LC50) values of Cry1A.105 and Cry2Ab2 in 24 different field populations of O. furnacalis ranged from 0.006 to 0.401 µg/mL and from 0.044 to 4.490 µg/mL, respectively, while the LC95 values ranged from 0.069 to 15.233 µg/mL for Cry1A.105 and from 3.320 to 277.584 µg/mL for Cry2Ab2. The relative resistance ratios comparing the most tolerant field populations and an unselected laboratory population were 6.0 for Cry1A.105 and 2.0 for Cry2Ab2 based on their LC50 values. Some field populations were more susceptible to both proteins than the unselected laboratory population. The LC99 and its 95% fiducial limits across the field populations were calculated and proposed as candidate diagnostic concentrations. These data provide a basis for resistance monitoring in Bt Corn and further support building resistance-management strategies in Indonesia.
Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Indonésia , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/toxicidade , Toxinas de Bacillus thuringiensis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/toxicidade , Mariposas/genética , Mariposas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Resistência a Inseticidas/genética , Larva/metabolismoRESUMO
An increase in Spodoptera species was reported in Bt soybean fields expressing Cry1Ac insecticidal proteins in Brazil, requiring additional management with chemical insecticides. Here, we evaluated the dose effects of flubendiamide and thiodicarb on Spodoptera cosmioides (Walker, 1858), Spodoptera eridania (Stoll, 1782), Spodoptera albula (Walker, 1857) and Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) that survived on MON 87751 × MON 87708 × MON 87701 × MON 89788, expressing Cry1A.105, Cry2Ab2 and Cry1Ac; MON 87701 × MON 89788 soybean, expressing Cry1Ac; and non-Bt soybean. On unsprayed Cry1A.105/Cry2Ab2/Cry1Ac soybean, only S. frugiperda showed ~60% mortality after 10 d, whereas S. cosmioides, S. eridania and S. albula showed >81% mortality. The surviving larvae of all species on this Bt soybean showed >80% mortality when exposed to the field label dose of flubendiamide (70 mL/ha) or thiodicarb (400 g/ha) or at 50% of these doses. In contrast, all four species had <25% and <19% mortality on Cry1Ac and non-Bt soybean, respectively. The surviving S. cosmioides, S. eridania and S. albula on these soybean types presented >83% mortality after exposure to both dose levels of flubendiamide and thiodicarb. Some S. frugiperda larvae surviving on Cry1Ac and non-Bt soybean sprayed with a 50% dose of either insecticide developed into adults. However, the L1 larvae developing on Cry1Ac soybean leaves sprayed with flubendiamide and the L2 larvae on this soybean sprayed with thiodicarb had a prolonged immature stage, and the females displayed lower fecundity, which are likely to impact S. frugiperda population growth on soybean.
RESUMO
BACKGROUND: MON 87701 × MON 89788 × MON 87751 × MON 87708 soybean, that expresses Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins and confers tolerance to glyphosate and dicamba, is a potential tool for managing Spodoptera species in soybean fields in Brazil. In this study, we characterized the lethal and sub-lethal effects of Cry1A.105/Cry2Ab2/Cry1Ac soybean against Spodoptera species and genotypes of Spodoptera frugiperda resistant and susceptible to Cry1 and Cry2 proteins. These evaluations were also conducted with MON 87701 × MON 89788 soybean, which expresses Cry1Ac protein. RESULTS: Cry1A.105/Cry2Ab2/Cry1Ac soybean caused high lethality in neonates of Spodoptera cosmioides and Spodoptera albula. However, it showed low lethality in S. frugiperda genotypes homozygous for resistance to Cry1 and Cry2 proteins but reduced their population growth potential. No relevant lethal effects of Cry1Ac soybean were detected in the Spodoptera species and genotypes evaluated. Spodoptera frugiperda genotypes heterozygous for Cry1 and Cry2 resistance were controlled by Cry1A.105/Cry2Ab2/Cry1Ac soybean, with no insects developing into adults. This Bt soybean also caused intermediate mortality of neonates of Spodoptera eridania (60%-83%) but no surviving larvae developed to adulthood, resulting in population suppression. CONCLUSIONS: Cry1A.105/Cry2Ab2/Cry1Ac soybean caused high mortality of S. cosmioides, S. albula, and S. frugiperda genotypes susceptible to Cry1 and Cry2 and heterozygous for Cry1 and Cry2 resistance. This Bt soybean also suppressed population growth of S. eridania but had minimal impact on S. frugiperda homozygous for resistance to Cry1 and Cry2 proteins. Cry1Ac soybean had minimal impact on all Spodoptera species and genotypes evaluated. © 2022 Society of Chemical Industry.
Assuntos
Inseticidas , Mariposas , Animais , Humanos , Recém-Nascido , Spodoptera , Inseticidas/farmacologia , Glycine max/genética , Glycine max/metabolismo , Brasil , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Larva , Plantas Geneticamente Modificadas , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismoRESUMO
BACKGROUND: Bacillus thuringiensis (Bt) crops have been adopted worldwide, providing high-level protection from insect pests. Furthermore, Bt crops preserve natural enemies, promote higher yield, and economically benefit farmers. Although regional pest suppression by widespread Bt crop adoption has been observed in temperate regions, this possibility remains uncertain in tropical areas due to the high diversity of alternative hosts and mild winters. RESULTS: Evidence of regional reduction in insecticide use across areas was observed in Brazil where Cry1Ac soybean has been grown since 2013, with up to 50% reduction in the number of insecticide sprays for managing lepidopteran pests on non-Bt soybean observed at specific locations from 2012 to 2019. Pest monitoring data from four mesoregions across 5 years of commercial plantings of Cry1Ac soybean from December 2014 to July 2019 showed reduced numbers of Chrysodeixis includens moths captured in pheromone traps across years at all locations. The number of Helicoverpa spp. moths captured also was reduced at three locations. CONCLUSION: We provide evidence for regional suppression of lepidopteran pests and reduced insecticide use with the widespread adoption of Cry1Ac soybean in Brazil, bringing economic, social and environmental benefits. © 2022 Society of Chemical Industry.
Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Agricultura , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Produtos Agrícolas , Endotoxinas , Proteínas Hemolisinas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Glycine max/genéticaRESUMO
BACKGROUND: The sugarcane borer (SCB), Diatraea saccharalis (Lepidoptera: Crambidae), is a key pest of maize in Argentina, and genetically modified maize, producing Bacillus thuringiensis (Bt) proteins, has revolutionized the management of this insect in South America. However, field-evolved resistance to some Bt technologies has been observed in SCB in Argentina. Here we assessed a new Bt technology, MON 95379, in the laboratory, greenhouse and field for efficacy against SCB. RESULTS: In a laboratory leaf disc bioassay, both MON 95379 (producing Cry1B.868 and Cry1Da_7) and Cry1B.868_single maize (producing only Cry1B.868) resulted in 100% mortality of SCB. The level of Cry1B.868 in the Cry1B.868_single maize is comparable to that in MON 95379 maize. However, the Cry1Da_7 protein does not have high efficacy against SCB, as evidenced by < 20% mortality on Cry1Da_7_single leaf tissue. Total (100%) mortality of SCB in a Cry1B.868_single tissue dilution bioassay indicated that Cry1B.868_single maize meets the criteria to be classified as a high dose. Similar median lethal concentration (LC50 ) values were observed for MON 89034-R and susceptible SCB strains exposed to Cry1B.868 protein. MON 95379 also controlled SCB strains resistant to MON 89034 (Cry1A.105/Cry2Ab2) and Cry1Ab. Under field conditions in Brazil and Argentina, MON 95379 maize plants were consistently protected from SCB damage. CONCLUSION: MON 95379 maize will bring value to maize growers in South America by effectively managing SCB even in locations where resistance to other Bt-containing maize technologies has been reported. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Bacillus thuringiensis , Mariposas , Saccharum , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Brasil , Grão Comestível , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genéticaRESUMO
The soybean technology MON 87701 × MON 89788, expressing Cry1Ac and conferring tolerance to glyphosate, has been widely adopted in Brazil since 2013. However, pest shifts or resistance evolution could reduce the benefits of this technology. To assess Cry1Ac soybean performance and understand the composition of lepidopteran pest species attacking soybeans, we implemented large-scale sampling of larvae on commercial soybean fields during the 2019 and 2020 crop seasons to compare with data collected prior to the introduction of Cry1Ac soybeans. Chrysodeixis includens was the main lepidopteran pest in non-Bt fields. More than 98% of larvae found in Cry1Ac soybean were Spodoptera spp., although the numbers of Spodoptera were similar between Cry1Ac soybean and non-Bt fields. Cry1Ac soybean provided a high level of protection against Anticarsia gemmatalis, C. includens, Chloridea virescens and Helicoverpa spp. Significant reductions in insecticide sprays for lepidopteran control in soybean were observed from 2012 to 2019. Our study showed that C. includens and A. gemmatalis continue to be primary lepidopteran pests of soybean in Brazil and that Cry1Ac soybean continues to effectively manage the target lepidopteran pests. However, there was an increase in the relative abundance of non-target Spodoptera spp. larvae in both non-Bt and Cry1Ac soybeans.
Assuntos
Glycine max/genética , Lepidópteros/genética , Controle Biológico de Vetores/métodos , Animais , Toxinas de Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Brasil , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas , Larva/efeitos dos fármacos , Lepidópteros/patogenicidade , Mariposas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismoRESUMO
BACKGROUND: The Old-World bollworm, Helicoverpa armigera (Hübner), was recently documented attacking cotton and soybean plants in Brazil; however, restricted basic knowledge on host plant interactions and landscape use in Brazil have limited the effectiveness of control measures. In this study, we evaluated the suitability of different crops commonly cultivated in Brazil as hosts for H. armigera and H. zea, and examined their contribution to the establishment and size of H. armigera and H. zea field populations. We also estimated the proportions of H. armigera and H. zea moths that used cotton, noncotton C3 plants, and C4 plants as hosts in four regions in Brazil through the length of the cropping season. RESULTS: Viability of H. armigera larvae was highest on cotton (46.1%), followed by millet (39.5%), sorghum (31.2%), soybean (24.2%), and maize (21.1%). Noncotton C3 hosts served as the major source of H. armigera moths in all regions evaluated, and C4 hosts were a source of H. armigera mainly in regions where winter maize is typically cultivated. H. armigera moths that used cotton plants as natal hosts were observed during the reproductive stage of the crop mainly in the state of Bahia. Only C4 host plants were a consistent source of H. zea moths, primarily when maize was in the reproductive stage. H. armigera individuals were the main species infesting cotton and soybean fields while H. zea individuals were the main species infesting maize ears. CONCLUSIONS: Regional differences in the host use and population dynamics of H. armigera among the regions evaluated may be attributed to variation in alternative host utilization (crops, noncrops, and weeds) and the possible occurrence of facultative diapause and or migration.
Assuntos
Lepidópteros , Mariposas , Animais , Brasil , Produtos Agrícolas , Humanos , Larva , Zea maysRESUMO
Widespread adoption of MON 87701 × MON 89788 soybean, expressing Cry1Ac Bt protein and glyphosate tolerance, has been observed in Brazil. A proactive program was implemented to phenotypically and genotypically monitor Cry1Ac resistance in Chrysodeixis includens (Walker). Recent cases of unexpected injury in MON 87701 × MON 89788 soybean were investigated and a large-scale sampling of larvae on commercial soybean fields was performed to assess the efficacy of this technology and the distribution of lepidopteran pests in Brazil. No significant shift in C. includens susceptibility to Cry1Ac was observed eight years after commercial introduction of this technology in Brazil. F2 screen results confirmed that the frequency of Cry1Ac resistance alleles remains low and stable in C. includens. Unexpected injury caused by Rachiplusia nu (Guenée) and Crocidosema aporema (Walsingham) in MON 87701 × MON 89788 soybean was detected during the 2020/21 season, and studies confirmed a genetically based alteration in their susceptibility to Cry1Ac. MON 87701 × MON 89788 soybean remains effective against Anticarsia gemmatalis (Hübner), C. includens, Chloridea virescents (Fabricius) and Helicoverpa armigera (Hübner) in Brazil. However, there is evidence of field-evolved resistance to MON 87701 × MON 89788 soybean by the secondary soybean pests R. nu and C. aporema.
Assuntos
Glycine max/genética , Mariposas/genética , Plantas Geneticamente Modificadas , Animais , Toxinas de Bacillus thuringiensis/genética , Brasil , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Larva/genética , Controle Biológico de Vetores/métodosRESUMO
BACKGROUND: The pyramided genetically modified maize (Zea mays [L.]) event MON 95379, expressing the Cry1B.868 and Cry1Da_7 proteins, was designed to protect against larval feeding damage by the fall armyworm, Spodoptera frugiperda (FAW). Here, we conducted laboratory, greenhouse, and field studies to assess the dose and field efficacy of MON 95379 against FAW and inform the development of insect resistance management plans. RESULTS: The Cry1B.868 and Cry1Da_7 proteins were active against susceptible FAW neonates in diet-incorporation bioassays: median lethal concentration [LC50 ] (95% CI) = 62.8 (42.6-87.6) µg/ml diet for Cry1B.868 and 9.4 (5.3-18.6) µg/ml diet for Cry1Da_7. In laboratory leaf disc bioassays, MON 95379 maize and experimental maize lines expressing the individual components were effective in controlling susceptible FAW. In whole-plant assays, MON 95379 controlled FAW resistant to the Cry1A.105 and Cry2Ab2 proteins. Likewise, under field conditions, MON 95379 maize expressing Cry1B.868 and Cry1Da_7 was highly effective at protecting plants against the larval feeding of FAW. CONCLUSIONS: The expression of Cry1B.868 and Cry1Da_7 in MON 95379 consistently protected maize plants against larval feeding by FAW and represents an alternative to manage trait resistance issues in South America. © 2021 Bayer Crop Science-US. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Proteínas Hemolisinas , Zea mays , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas , Proteínas Hemolisinas/genética , Humanos , Recém-Nascido , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas , Spodoptera , Zea mays/genéticaRESUMO
Fall armyworm, Spodoptera frugiperda (J.E. Smith) is a major lepidopteran pest of maize in Brazil and its control particularly relies on the use of genetically engineered crops expressing Bacillus thuringiensis (Bt) toxins such as Cry1F. However, control failures compromising the efficacy of this technology have been reported in many regions in Brazil, but the mechanism of Cry1F resistance in Brazilian fall armyworm populations remained elusive. Here we investigated the molecular mechanism of Cry1F resistance in two field-collected strains of S. frugiperda from Brazil exhibiting high levels of Cry1F resistance. We first rigorously evaluated several candidate reference genes for normalization of gene expression data across strains, larval instars and gut tissues, and identified ribosomal proteins L10, L17 and RPS3A to be most suitable. We then investigated the expression pattern of ten potential Bt toxin receptors/enzymes in both neonates and 2nd instar gut tissue of Cry1F resistant fall armyworm strains compared to a susceptible strain. Next we sequenced the ATP-dependent Binding Cassette subfamily C2 gene (ABCC2) and identified three mutated sites present in ABCC2 of both Cry1F resistant strains: two of them, a GY deletion (positions 788-789) and a P799 K/R amino acid substitution, located in a conserved region of ABCC2 extracellular loop 4 (EC4) and another amino acid substitution, G1088D, but in a less conserved region. We further characterized the role of the novel mutations present in EC4 by functionally expressing both wild type and mutated ABCC2 transporters in insect cell lines, and confirmed a critical role of both sites for Cry1F binding by cell viability assays. Finally, we assessed the frequency of the mutant alleles by pooled population sequencing and pyrosequencing in 40 fall armyworm populations collected from maize fields in different regions in Brazil. We found that the GY deletion being present at high frequency. However we also observed many rare alleles which disrupt residues between sites 783-799, and their diversity and abundance in field collected populations lends further support to the importance of the EC4 domain for Cry1F toxicity.
Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera/genética , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Brasil , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Alinhamento de Sequência , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimentoRESUMO
The pyramided genetically modified (GM) soybean [Glycine max L. (Merr.)] MON87751 × MON87708 × MON87701 × MON89788, expressing Cry1A.105, Cry2Ab2, and Cry1Ac from Bacillus thuringiensis Berliner, was approved for commercial use in Brazil. We conducted laboratory, greenhouse, and field studies to assess the efficacy of this Bt soybean against key soybean lepidopteran pests. Neonates of Anticarsia gemmatalis (Hübner) (Lepidoptera: Erebidae), Chrysodeixis includens (Walker), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) were exposed to Bt proteins in diet-overlay bioassays. MON87751 × MON87708 × MON87701 × MON89788 soybean and individual components were evaluated in laboratory (leaf disc), greenhouse (high artificial infestations), and in field conditions (natural infestations). Neonates of A. gemmatalis, C. includens, and H. armigera were highly susceptible to Cry1A.105 (LC50 from 0.79 to 48.22 ng/cm2), Cry2Ab2 (LC50 from 1.24 to 8.36 ng/cm2), and Cry1Ac (LC50 from 0.15 to 5.07 ng/cm2) in diet-overlay bioassays. In laboratory leaf disc bioassays and greenhouse trials, MON87751 × MON87708 × MON87701 × MON89788 soybean as well as the individual components were highly effective in controlling A. gemmatalis, C. includens, and H. armigera. Similarly, under field conditions, the pyramided genotypes expressing Cry1A.105, Cry2Ab2, and Cry1Ac were highly effective at protecting soybean against C. includens. We concluded that the individual Bt proteins expressed by GM soybean MON87751 × MON87708 × MON87701 × MON89788 killed all or nearly all the susceptible A. gemmatalis, C. includens, and H. armigera, fulfilling one important criterion for successfully delaying resistance to pyramided Bt crops.
Assuntos
Glycine max , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Brasil , Endotoxinas , Proteínas Hemolisinas/genética , Larva , Mariposas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Glycine max/genéticaRESUMO
Evolutionary studies of insect pests improve our ability to anticipate problems in agricultural ecosystems, such as pest outbreaks, control failures, or expansions of the host range. Here, we investigated the mechanisms underlying the evolutionary processes behind the recent census size expansion and local adaptation of Chrysodeixis includens. First, we sequenced mitochondrial markers to conduct a phylogeographic investigation of C. includens historical processes. Then, we combined a de novo genotyping-by-sequencing approach with a study of agricultural landscapes to uncover recent processes of adaptation. Primarily, we found low genetic diversity across all markers and clear indications of a recent demographic expansion. We also found a lack of significant isolation by distance (IBD), and weak or absent genetic structure considering geographic locations. However, we did find initial signs of population differentiation that were associated with host plant types (i.e., soybean and cotton). Agricultural landscape attributes, including soybean crops, were significantly associated with putative markers under positive selection. Moreover, positive selection associated with host differentiation was putatively linked to digestive enzymes. This study showed how landscape composition and host plants can affect the evolutionary process of agricultural pest insects such as C. includens.
RESUMO
BACKGROUND: Maize technologies expressing Bacillus thuringiensis (Bt) insecticidal proteins are widely used in Argentina to control sugarcane borer (Diatraea saccharalis Fabricius). Unexpected D. saccharalis damage was observed to Bt maize events TC1507 (expressing Cry1F) and MON 89034 × MON 88017 (expressing Cry1A.105 and Cry2Ab2) in an isolated area of San Luis Province. Diatraea saccharalis larvae were sampled from MON 89034 × MON 88017 fields in the area to generate a resistant strain (RR), which was subsequently characterized in plant and diet bioassays. RESULTS: Survivorship of the RR strain was high on TC1507 leaf tissue, intermediate on MON 89034 × MON 88017, and low on MON 810 (expressing Cry1Ab). The RR strain had high resistance to Cry1A.105 (186.74-fold) and no resistance to Cry2Ab2 in diet bioassays. These results indicate resistance to Cry1F and Cry1A.105 (and likely cross-resistance between them) but not to Cry1Ab or Cry2Ab2. Resistance to MON 89034 × MON 88017 was functionally recessive. Reviews of grower records suggest that resistance initially evolved to Cry1F, conferring cross-resistance to Cry1A.105, with low refuge compliance as the primary cause. A mitigation plan was implemented in San Luis that included technology rotation, field monitoring, and grower education on best management practices (BMPs) including refuges. CONCLUSION: In the affected area, the resistance to Cry1F and Cry1A.105 is being managed effectively through use of MON 89034 × MON 88017 and MON 810 in combination with BMPs, and no spread of resistance to other regions has been observed. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Mariposas/efeitos dos fármacos , Zea mays/fisiologia , Animais , Argentina , Toxinas de Bacillus thuringiensis , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Zea mays/genéticaRESUMO
The use of Bt proteins in crops has revolutionized insect pest management by offering effective season-long control. However, field-evolved resistance to Bt proteins threatens their utility and durability. A recent example is field-evolved resistance to Cry1Fa and Cry1A.105 in fall armyworm (Spodoptera frugiperda). This resistance has been detected in Puerto Rico, mainland USA, and Brazil. A S. frugiperda population with suspected resistance to Cry1Fa was sampled from a maize field in Puerto Rico and used to develop a resistant lab colony. The colony demonstrated resistance to Cry1Fa and partial cross-resistance to Cry1A.105 in diet bioassays. Using genetic crosses and proteomics, we show that this resistance is due to loss-of-function mutations in the ABCC2 gene. We characterize two novel mutant alleles from Puerto Rico. We also find that these alleles are absent in a broad screen of partially resistant Brazilian populations. These findings confirm that ABCC2 is a receptor for Cry1Fa and Cry1A.105 in S. frugiperda, and lay the groundwork for genetically enabled resistance management in this species, with the caution that there may be several distinct ABCC2 resistances alleles in nature.
Assuntos
Controle de Insetos , Inseticidas/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Spodoptera/química , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Brasil , Endotoxinas/genética , Proteínas Hemolisinas/genética , Humanos , Resistência a Inseticidas/genética , Inseticidas/efeitos adversos , Proteína 2 Associada à Farmacorresistência Múltipla , Mutação , Proteômica , Porto Rico , Spodoptera/genética , Estados UnidosRESUMO
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), the fall armyworm is the most economically important maize pest in the western hemisphere. This research focused on the genetic variability of the maize host strain because there is a lack of information in this area of S. frugiperda research. Amplified fragment length polymorphism (AFLP) was used to assess the genetic variability of S. frugiperda over a large geographic area. Twenty populations were collected from the maize, one population was collected from princess tree, one population was collected from lemon tree, and one population was collected from bermudagrass. The 23 populations were from Mexico, the continental United States, Puerto Rico, Brazil, and Argentina. The objective of this research was to evaluate whether the majority of genetic variability was within populations or between populations. The AFLP results showed that the majority of the genetic variability is within populations and not between populations, indicating minor gene flow and suggesting that S. frugiperda in the Western Hemisphere are an interbreeding population.
Assuntos
Variação Genética , Spodoptera/genética , América , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Fluxo Gênico , Heterozigoto , Interações Hospedeiro-Parasita , Filogenia , Análise de Componente Principal , Spodoptera/classificaçãoRESUMO
The molecular variability among 10 populations of Spodoptera frugiperda (J.E. Smith), collected from maize, Zea mays L., or cotton Gossypium hirsutum L. crops located at distinctive geographical regions in Brazil, was assessed through random amplification of polymorphic DNA (RAPD)-polymerase chain reaction (PCR). In total, 208 RAPD markers were evaluated, and 98% of them were polymorphic. The mean genetic similarity was 0.6621 and 0.2499 by the Simple Matching and Jaccard matrices, respectively. In general, the unweighted pair-group method with arithmetic average dendrograms separated the populations into clusters related to the geographical origin of the samples. No branch of the dendrograms underpinning a molecular association of S. frugiperda has been identified to either of the two host plants. The molecular variance analysis showed that 18 and 82% of the genetic variation was distributed among and within the groups of populations, respectively. The principal coordinate analysis reinforced the pattern of population clustering found with the unweighted pair-group method with arithmetic average method. These results suggest the occurrence of considerable gene flow between S. frugiperda populations from maize and cotton fields located in the same region in Brazil. Therefore, for an effective management of this pest, there is an urgent need for a better understanding of the gene flow of S. frugiperda populations associated to different host plants along the distribution range of this pest over time in a specific cropping system.