Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(5): e16636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783572

RESUMO

Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne Fusarium oxysporum species complex. However, the genetic diversity among Fusarium species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 Fusarium isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global Fusarium panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that F. purpurascens, F. phialophorum, and F. tardichlamydosporum are responsible for FWB in Cuba, with F. tardichlamydosporum dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with F. tardichlamydosporum isolates forming at least two subgroups. This finding underscores the high genetic diversity of Fusarium spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.


Assuntos
Fusarium , Variação Genética , Musa , Filogenia , Doenças das Plantas , Fusarium/genética , Fusarium/classificação , Fusarium/patogenicidade , Fusarium/isolamento & purificação , Musa/microbiologia , Cuba , Doenças das Plantas/microbiologia , Região do Caribe , América Latina
2.
New Phytol ; 242(2): 610-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402521

RESUMO

Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.


Assuntos
Fusarium , Genoma Fúngico , Duplicações Segmentares Genômicas , Fusarium/genética , Especificidade de Hospedeiro , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Phytopathology ; 114(1): 111-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37311735

RESUMO

Bananas are major agricultural commodities in Cuba. One of the main constraints of banana production worldwide is Fusarium wilt of banana. Recent outbreaks in Colombia, Perú, and Venezuela have raised widespread concern in Latin America due to the potential devastating impact on the sustainability of banana production, food security, and livelihoods of millions of people in the region. Here, we phenotyped 18 important Cuban banana and plantain varieties with two Fusarium strains-Tropical Race 4 (TR4) and Race 1-under greenhouse conditions. These varieties represent 72.8% of the national banana acreage in Cuba and are also widely distributed in Latin America and the Caribbean region. A broad range of disease responses from resistant to very susceptible was observed against Race 1. On the contrary, not a single banana variety was resistant to TR4. These results underscore that TR4 potentially threatens nearly 56% of the contemporary Cuban banana production area, which is planted with susceptible and very susceptible varieties, and call for a preemptive evaluation of new varieties obtained in the national breeding program and the strengthening of quarantine measures to prevent the introduction of TR4 into the country.


Assuntos
Fusarium , Musa , Humanos , Fusarium/fisiologia , Doenças das Plantas/prevenção & controle , Melhoramento Vegetal , Fenótipo
4.
Plant Dis ; 107(3): 628-632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35984393

RESUMO

Fusarium wilt of banana (FWB) is a serious soil-borne fungal disease. In the previous century, FWB already destroyed Gros Michel-based banana cultures in Central America, and currently, the disease threatens all major banana-producing regions of the world. The causal agents of these epidemics, however, are diverse. Gros Michel was infected by a wide range of Fusarium species, the so-called Race 1 strains, whereas the contemporary Cavendish-based cultures are affected by Fusarium odoratissimum, colloquially called Tropical Race 4 (TR4). TR4 was reported in Mozambique on two commercial banana farms in 2013, but no incursions were found outside the farm boundaries in 2015, suggesting that the disease was under control. Here we report the presence of TR4 outside of these farm boundaries. We obtained fungal samples from 13 banana plants in smallholder and roadside plantings at various locations throughout northern Mozambique. These samples tested positive for TR4 by molecular diagnostics and in greenhouse pathogenicity assays. The results were confirmed with reisolations, thereby completing Koch's postulates. To study the diversity of TR4 isolates in Mozambique, we selected five samples for whole-genome sequencing. Comparison with a global collection of TR4 samples revealed very little genetic variation, indicating that the fungus is clonally spreading in Mozambique. Furthermore, isolates from Mozambique are clearly genetically separated from other geographic incursions, and thus we cannot trace the origin of TR4 in Mozambique. Nevertheless, our data demonstrates the dissemination of TR4 in Mozambique, underscoring the failure of disease management strategies. This threatens African banana production.


Assuntos
Fusarium , Musa , Musa/microbiologia , Moçambique , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA